
TypeScript

Cheat Sheet

Key points A TypeScript class has a few type-specific extensions to ES2015 JavaScript
classes, and one or two runtime additions.

Parameters to the new ABC come
from the constructor function.

The prefix private is a type-only
addition, and has no effect at
runtime. Code outside of the class
can reach into the item in the
following case:

Vs #private which is runtime
private and has enforcement
inside the JavaScript engine that it
is only accessible inside the class:

The value of ‘this’ inside a function
depends on how the function is
called. It is not guaranteed to
always be the class instance which
you may be used to in other
languages.

You can use ‘this parameters’, use
the bind function, or arrow
functions to work around the issue
when it occurs.

Surprise, a class can be used as
both a type or a value.

So, be careful to not do this:

Class

class ABC { ... }

 abc = new ABC()const

class

private

 item

Bag {

: any

}

class #itemBag { : any }

const a:Bag = new Bag()

class C implements Bag {}

Creating an class instance

private x vs #private

‘this’ in classes

Type and Value

class extends implements

get

set

private

protected

static

static

static

 User Account {

 : string;

?: boolean;

: string;

: Map<any, any>;

 = [];

 = new Date()

 (id: , email:) {

 super(id);

 .email = email;

 ...

 };

 (name: string) { this.name = name }

 (name: string) => { ... }

 (): Promise<{ ... }>

 (cb: ((result: string) => void)): void

 (cb?: ((result: string) => void)): void | Promise<{ ... }> { ... }

 accountID() { }

 accountID(value: string) { }

 () { ... }

 () { ... }

 #userCount = 0;

 registerUser(user: User) { ... }

 { this.#userCount = -1 }

}

Updatable Serializable

"user"

string string

,

id

setName

verifyName =

 displayName

 name!

 #attributes

roles

readonly createdAt

constructor

sync

sync

sync

makeRequest

handleRequest

this

// A field

// An optional field

// A ‘trust me, it’s there’ field

// A private field

// A field with a default

// A readonly field with a default

Common Syntax Subclasses this class

Ensures that the class

conforms to a set of
interfaces or types

The code called on ‘new’

In this code is checked against
the fields to ensure it is set up correctly

strict: true

Type Value

Ways to describe class
methods (and arrow
function fields)

Private access is just to this class, protected
allows to subclasses. Only used for type
checking, public is the default.

Static fields / methods

Static blocks for setting up static
vars. ‘this’ refers to the static class

A function with 2
overload definitions

Getters and setters

abstract class

abstract

 Animal {

 getName(): string;

 () {

 console.log(+ this.getName());

 }

}

printName

"Hello, "

class extends Dog Animal { getName(): { ... } }

Abstract Classes

A class can be declared as not implementable, but as existing to
be subclassed in the type system. As can members of the class.

import

 from

class

{

 Syncable, triggersSync, preferCache, required

}

@

User {

 @ ()

 () { ... }

 @ (false)

 get displayName() { ... }

 (@ info: Partial<User>) { ... }

}

"mylib"

Syncable

triggersSync

preferCache

required

save

update

Decorators and Attributes

You can use decorators on classes, class methods, accessors, property and
parameters to methods.

class Location {

 (public x: number, public y: number) {}

}

 loc = new Location(20, 40);

loc.x

loc.y

constructor

const

// 20

// 40

Parameter Properties

A TypeScript specific extension to classes which
automatically set an instance field to the input parameter.

Generics
Declare a type which can
change in your class
methods.

class

const

 Box< > {

 : Type

 (value:) {

 this.contents = value;

 }

}

 stringBox = new Box()

Type

Type

"a package"

contents

constructor

Class type parameter

Used here

These features are TypeScript specific language extensions which may
never make it to JavaScript with the current syntax.

