cecma

dNOidlft ECMA-262
- .| 7™Edition/ June 2016

ECMAScript® 2016
Language Specification

Rue du Rhoéne 114 CH-1204 Geneva T +41 22 849 6000 F: +41 22 849 6001

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: http://www.ecma-international.org

ecma

INTERNATIONAL
is the registered trademark of Ecma International

A_ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2016

http://www.ecma-international.org/

oecinad

COPYRIGHT NOTICE
© 2016 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it
may be prepared, copied, published, and distributed, in whole or in part, provided that the above
copyright notice and this Copyright License and Disclaimer are included on all such copies and
derivative works. The only derivative works that are permissible under this Copyright License and
Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(i) works which incorporate all or portion of this document for the purpose of incorporating features
that provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g.
by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official
version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

Software License

All Software contained in this document ("Software)" is protected by copyright and is being made available under the "BSD
License", included below. This Software may be subject to third party rights (rights from parties other than Ecma
International), including patent rights, and no licenses under such third party rights are granted under this license even if
the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN PATENT
MATTERS AVAILABLE AT http://www.ecma-international.org/memento/codeofconduct.htm FOR INFORMATION
REGARDING THE LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL
STANDARDS*.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor Ecma International may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA INTERNATIONAL BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© Ecma International 2016 i

http://www.ecma-international.org/memento/codeofconduct.htm

secha

© Ecma International 2016

ECMA-262
7' Edition

ECMAScript® 2016 Language Specification

@ecdmd

Table of Contents

Introduction
1 Scope
2 Conformance
3 Normative References
4 Overview
4.1 Web Scripting
4.2 ECMAScript Overview
4.2.1 Objects
4.2.2 The Strict Variant of ECMAScript
4.3 Terms and Definitions
4.3.1 type
4.3.2 primitive value
4.3.3 object
4.3.4 constructor
4.3.5 prototype
4.3.6 ordinary object
4.3.7 exotic object
4.3.8 standard object
4.3.9 built-in object
4.3.10 undefined value
4.3.11 Undefined type
4.3.12 null value
4.3.13 Null type
4.3.14 Boolean value
4.3.15 Boolean type
4.3.16 Boolean object
4.3.17 String value
4.3.18 String type
4.3.19 String object
4.3.20 Number value
4.3.21 Number type
4.3.22 Number object
4.3.23 Infinity
4.3.24 NaN
4.3.25 Symbol value
4.3.26 Symbol type
4.3.27 Symbol object

4.3.28 function
4.3.29 built-in function
4.3.30 property
4.3.31 method
4.3.32 built-in method
4.3.33 attribute
4.3.34 own property
4.3.35 inherited property
4.4 Organization of This Specification
5 Notational Conventions
5.1 Syntactic and Lexical Grammars
5.1.1 Context-Free Grammars
5.1.2 The Lexical and RegExp Grammars
5.1.3 The Numeric String Grammar
5.1.4 The Syntactic Grammar
5.1.5 Grammar Notation
5.2 Algorithm Conventions
5.3 Static Semantic Rules
6 ECMAScript Data Types and Values
6.1 ECMAScript Language Types
6.1.1 The Undefined Type
6.1.2 The Null Type
6.1.3 The Boolean Type
6.1.4 The String Type
6.1.5 The Symbol Type
6.1.5.1 Well-Known Symbols
6.1.6 The Number Type
6.1.7 The Object Type
6.1.7.1 Property Attributes
6.1.7.2 Object Internal Methods and Internal Slots
6.1.7.3 Invariants of the Essential Internal Methods
6.1.7.4 Well-Known Intrinsic Objects
6.2 ECMAScript Specification Types
6.2.1 The List and Record Specification Types
6.2.2 The Completion Record Specification Type
6.2.2.1 NormalCompletion
6.2.2.2 Implicit Completion Values
6.2.2.3 Throw an Exception
6.2.2.4 ReturnlfAbrupt
6.2.2.5 UpdateEmpty (completionRecord, value)
6.2.3 The Reference Specification Type
6.2.3.1 GetValue (V)
6.2.3.2 PutValue (V, W)
6.2.3.3 GetThisValue (V)
6.2.3.4 InitializeReferencedBinding (V, W)
6.2.4 The Property Descriptor Specification Type
6.2.4.1 IsAccessorDescriptor (Desc)
6.2.4.2 IsDataDescriptor (Desc)
6.2.4.3 IsGenericDescriptor (Desc)
6.2.4.4 FromPropertyDescriptor (Desc)
6.2.4.5 ToPropertyDescriptor (Obj)
6.2.4.6 CompletePropertyDescriptor (Desc)
6.2.5 The Lexical Environment and Environment Record Specification Types
6.2.6 Data Blocks

6.2.6.1 CreateByteDataBlock (size)
6.2.6.2 CopyDataBlockBytes (toBlock, tolndex, fromBlock, fromIndex, count)
7 Abstract Operations
7.1 Type Conversion
7.1.1 ToPrimitive (input [, PreferredType |)
7.1.2 ToBoolean (argument)
7.1.3 ToNumber (argument)
7.1.3.1 ToNumber Applied to the String Type
7.1.3.1.1 RS: MV's
7.1.4 Tolnteger (argument)
7.1.5 ToInt32 (argument)
7.1.6 ToUint32 (argument)
7.1.7 Tolnt16 (argument)
7.1.8 ToUint16 (argument)
7.1.9 Tolnt8 (argument)
7.1.10 ToUint8 (argument)
7.1.11 ToUint8Clamp (argument)
7.1.12 ToString (argument)
7.1.12.1 ToString Applied to the Number Type
7.1.13 ToObject (argument)
7.1.14 ToPropertyKey (argument)
7.1.15 ToLength (argument)
7.1.16 CanonicalNumericIndexString (argument)
7.2 Testing and Comparison Operations
7.2.1 RequireObjectCoercible (argument)
7.2.2 IsArray (argument)
7.2.3 IsCallable (argument)
7.2.4 IsConstructor (argument)
7.2.5 IsExtensible (0)
7.2.6 IsInteger (argument)
7.2.7 IsPropertyKey (argument)
7.2.8 IsRegExp (argument)
7.2.9 SameValue (x,y)
7.2.10 SameValueZero (x, y)
7.2.11 SameValueNonNumber (x, y)
7.2.12 Abstract Relational Comparison
7.2.13 Abstract Equality Comparison
7.2.14 Strict Equality Comparison
7.3 Operations on Objects
7.3.1 Get (0, P)
7.3.2 GetV (V, P)
7.3.3 Set (0, P, V, Throw)
7.3.4 CreateDataProperty (O, P, V)
7.3.5 CreateMethodProperty (O, P, V)
7.3.6 CreateDataPropertyOrThrow (O, P, V)
7.3.7 DefinePropertyOrThrow (O, P, desc)
7.3.8 DeletePropertyOrThrow (O, P)
7.3.9 GetMethod (V, P)
7.3.10 HasProperty (O, P)
7.3.11 HasOwnProperty (O, P)
7.3.12 Call (F, V[, argumentsList |)
7.3.13 Construct (F [, argumentsList [, newTarget |])
7.3.14 SetIntegrityLevel (O, level)
7.3.15 TestIntegrityLevel (O, level)

7.3.16 CreateArrayFromList (elements)
7.3.17 CreateListFromArrayLike (obj [, elementTypes |)
7.3.18 Invoke (V, P [, argumentsList |)
7.3.19 OrdinaryHasInstance (C, 0)
7.3.20 SpeciesConstructor (O, defaultConstructor)
7.3.21 EnumerableOwnNames (0)
7.3.22 GetFunctionRealm (obj)
7.4 Operations on Iterator Objects
7.4.1 Getlterator (obj [, method |)
7.4.2 IteratorNext (iterator [, value |)
7.4.3 IteratorComplete (iterResult)
7.4.4 TteratorValue (iterResult)
7.4.5 IteratorStep (iterator)
7.4.6 IteratorClose (iterator, completion)
7.4.7 CreatelterResultObject (value, done)
7.4.8 CreateListlterator (list)
7.4.8.1 Listlterator next()
8 Executable Code and Execution Contexts
8.1 Lexical Environments
8.1.1 Environment Records
8.1.1.1 Declarative Environment Records
8.1.1.1.1 HasBinding (N)
8.1.1.1.2 CreateMutableBinding (N, D)
8.1.1.1.3 CreatelmmutableBinding (N, S)
8.1.1.1.4 InitializeBinding (N, V)
8.1.1.1.5 SetMutableBinding (N, V, S)
8.1.1.1.6 GetBindingValue (N, S)
8.1.1.1.7 DeleteBinding (N)
8.1.1.1.8 HasThisBinding ()
8.1.1.1.9 HasSuperBinding ()
8.1.1.1.10 WithBaseObject ()
8.1.1.2 Object Environment Records
8.1.1.2.1 HasBinding (N)
8.1.1.2.2 CreateMutableBinding (N, D)
8.1.1.2.3 CreatelmmutableBinding (N, S)
8.1.1.2.4 InitializeBinding (N, V)
8.1.1.2.5 SetMutableBinding (N, V, S)
8.1.1.2.6 GetBindingValue (N, S)
8.1.1.2.7 DeleteBinding (N)
8.1.1.2.8 HasThisBinding ()
8.1.1.2.9 HasSuperBinding ()
8.1.1.2.10 WithBaseObject ()
8.1.1.3 Function Environment Records
8.1.1.3.1 BindThisValue (V)
8.1.1.3.2 HasThisBinding ()
8.1.1.3.3 HasSuperBinding ()
8.1.1.3.4 GetThisBinding ()
8.1.1.3.5 GetSuperBase ()
8.1.1.4 Global Environment Records
8.1.1.4.1 HasBinding (N)
8.1.1.4.2 CreateMutableBinding (N, D)
8.1.1.4.3 CreatelmmutableBinding (N, S)
8.1.1.4.4 InitializeBinding (N, V)
8.1.1.4.5 SetMutableBinding (N, V, S)

8.1.1.4.6 GetBindingValue (N, S)
8.1.1.4.7 DeleteBinding (N)
8.1.1.4.8 HasThisBinding ()
8.1.1.4.9 HasSuperBinding ()
8.1.1.4.10 WithBaseObject ()
8.1.1.4.11 GetThisBinding ()
8.1.1.4.12 HasVarDeclaration (N)
8.1.1.4.13 HasLexicalDeclaration (N)
8.1.1.4.14 HasRestrictedGlobalProperty (N)
8.1.1.4.15 CanDeclareGlobalVar (N)
8.1.1.4.16 CanDeclareGlobalFunction (N)
8.1.1.4.17 CreateGlobalVarBinding (N, D)
8.1.1.4.18 CreateGlobalFunctionBinding (N, V, D)
8.1.1.5 Module Environment Records
8.1.1.5.1 GetBindingValue (N, S)
8.1.1.5.2 DeleteBinding (N)
8.1.1.5.3 HasThisBinding ()
8.1.1.5.4 GetThisBinding ()
8.1.1.5.5 CreatelmportBinding (N, M, N2)
8.1.2 Lexical Environment Operations
8.1.2.1 GetldentifierReference (lex, name, strict)
8.1.2.2 NewDeclarativeEnvironment (E)
8.1.2.3 NewObjectEnvironment (O, E)
8.1.2.4 NewFunctionEnvironment (F, newTarget)
8.1.2.5 NewGlobalEnvironment (G, thisValue)
8.1.2.6 NewModuleEnvironment (E)
8.2 Realms
8.2.1 CreateRealm ()
8.2.2 Createlntrinsics (realmRec)
8.2.3 SetRealmGlobalObject (realmRec, globalObj, thisValue)
8.2.4 SetDefaultGlobalBindings (realmRec)
8.3 Execution Contexts
8.3.1 GetActiveScriptOrModule ()
8.3.2 ResolveBinding (name [,env])
8.3.3 GetThisEnvironment ()
8.3.4 ResolveThisBinding ()
8.3.5 GetNewTarget ()
8.3.6 GetGlobalObject ()
8.4 Jobs and Job Queues
8.4.1 Enqueue]ob (queueName, job, arguments)
8.4.2 NextJob
8.5 InitializeHostDefinedRealm ()
9 Ordinary and Exotic Objects Behaviours
9.1 Ordinary Object Internal Methods and Internal Slots
9.1.1 [[GetPrototypeOf]] ()
9.1.1.1 OrdinaryGetPrototypeOf (0)
9.1.2 [[SetPrototypeOf]] (V)
9.1.2.1 OrdinarySetPrototypeOf (0, V)
9.1.3 [[IsExtensible]] ()
9.1.3.1 OrdinarylsExtensible (0)
9.1.4 [[PreventExtensions]] ()
9.1.4.1 OrdinaryPreventExtensions (0)
9.1.5 [[GetOwnProperty]] (P)
9.1.5.1 OrdinaryGetOwnProperty (O, P)

9.1.6 [[DefineOwnProperty]] (P, Desc)
9.1.6.1 OrdinaryDefineOwnProperty (O, P, Desc)
9.1.6.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)
9.1.6.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)
9.1.7 [[HasProperty]](P)
9.1.7.1 OrdinaryHasProperty (O, P)
9.1.8 [[Get]] (P, Receiver)
9.1.8.1 OrdinaryGet (O, P, Receiver)
9.1.9 [[Set]] (P, V, Receiver)
9.1.9.1 OrdinarySet (O, P, V, Receiver)
9.1.10 [[Delete]] (P)
9.1.10.1 OrdinaryDelete (O, P)
9.1.11 [[OwnPropertyKeys]] ()
9.1.11.1 OrdinaryOwnPropertyKeys (0)
9.1.12 ObjectCreate (proto [, internalSlotsList])
9.1.13 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto [, internalSlotsList |)
9.1.14 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)
9.2 ECMAScript Function Objects
9.2.1 [[Call]] (thisArgument, argumentsList)
9.2.1.1 PrepareForOrdinaryCall (F, newTarget)
9.2.1.2 OrdinaryCallBindThis (F, calleeContext, thisArgument)
9.2.1.3 OrdinaryCallEvaluateBody (F, argumentsList)
9.2.2 [[Construct]| (argumentsList, newTarget)
9.2.3 FunctionAllocate (functionPrototype, strict, functionKind)
9.2.4 Functionlnitialize (F, kind, ParameterList, Body, Scope)
9.2.5 FunctionCreate (kind, ParameterList, Body, Scope, Strict [, prototype |)
9.2.6 GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)
9.2.7 AddRestrictedFunctionProperties (F, realm)
9.2.7.1 %ThrowTypeError% ()
9.2.8 MakeConstructor (F [, writablePrototype, prototype |)
9.2.9 MakeClassConstructor (F)
9.2.10 MakeMethod (F, homeObject)
9.2.11 SetFunctionName (F, name [, prefix])
9.2.12 FunctionDeclarationInstantiation (func, argumentsList)
9.3 Built-in Function Objects
9.3.1 [[Call]] (thisArgument, argumentsList)
9.3.2 [[Construct]] (argumentsList, newTarget)
9.3.3 CreateBuiltinFunction (realm, steps, prototype [, internalSlotsList |)
9.4 Built-in Exotic Object Internal Methods and Slots
9.4.1 Bound Function Exotic Objects
9.4.1.1 [[Call]] (thisArgument, argumentsList)
9.4.1.2 [[Construct]] (argumentsList, newTarget)
9.4.1.3 BoundFunctionCreate (targetFunction, boundThis, boundArgs)
9.4.2 Array Exotic Objects
9.4.2.1 [[DefineOwnProperty]] (P, Desc)
9.4.2.2 ArrayCreate (length [, proto)
9.4.2.3 ArraySpeciesCreate (originalArray, length)
9.4.2.4 ArraySetLength (4, Desc)
9.4.3 String Exotic Objects
9.4.3.1 [[GetOwnProperty]] (P)
9.4.3.2 [[OwnPropertyKeys]] ()
9.4.3.3 StringCreate (value, prototype)
9.4.4 Arguments Exotic Objects
9.4.4.1 [[GetOwnProperty]] (P)

9.4.4.2
9.4.4.3

DefineOwnProperty]] (P, Desc)

Get]] (P, Receiver)

9.4.4.4 [[Set]] (P, V, Receiver)

9.4.4.5 [[HasProperty]] (P)

9.4.4.6 [[Delete]] (P)

9.4.4.7 CreateUnmappedArgumentsObject (argumentsList)

Il
([
Il
Il

9.4.4.8 CreateMappedArgumentsObject (func, formals, argumentsList, env)
9.4.4.8.1 MakeArgGetter (name, env)
9.4.4.8.2 MakeArgSetter (name, env)
9.4.5 Integer Indexed Exotic Objects
9.4.5.1 [[GetOwnProperty]] (P)
9.4.5.2 [[HasProperty]](P)
9.4.5.3 [[DefineOwnProperty]] (P, Desc)
9.4.5.4 [[Get]] (P, Receiver)
9.4.5.5 [[Set]] (P, V, Receiver)
9.4.5.6 [[OwnPropertyKeys]] ()
9.4.5.7 IntegerIndexedObjectCreate (prototype, internalSlotsList)
9.4.5.8 IntegerIndexedElementGet (O, index)
9.4.5.9 IntegerindexedElementSet (O, index, value)
9.4.6 Module Namespace Exotic Objects
9.4.6.1 [[GetPrototypeOf]] ()
9.4.6.2 [[SetPrototypeOf]] (V)
9.4.6.3 [[IsExtensible]] ()
9.4.6.4 [[PreventExtensions]] ()
9.4.6.5 [[GetOwnProperty]] (P)
9.4.6.6 [[DefineOwnProperty]] (P, Desc)
9.4.6.7 [[HasProperty]] (P)
9.4.6.8 [[Get]] (P, Receiver)
9.4.6.9 [[Set]] (P, V, Receiver)
9.4.6.10 [[Delete]] (P)
9.4.6.11 [[OwnPropertyKeys]] ()
9.4.6.12 ModuleNamespaceCreate (module, exports)

[
[
[
[
[
[
[
[

9.4.7 Immutable Prototype Exotic Objects
9.4.7.1 [[SetPrototypeOf]] (V)

9.5 Proxy Object Internal Methods and Internal Slots
9.5.1 [[GetPrototypeOf]] ()
9.5.2 [[SetPrototypeOf]] (V)
9.5.3 [[IsExtensible]] ()
9.5.4 [[PreventExtensions]] ()
9.5.5 [[GetOwnProperty]] (P)
9.5.6 [[DefineOwnProperty]] (P, Desc)
9.5.7 [[HasProperty]] (P)
9.5.8 [[Get]] (P, Receiver)
9.5.9 [[Set]] (P, V, Receiver)
9.5.10 [[Delete]] (P)
9.5.11 [[OwnPropertyKeys]] ()
9.5.12 [[Call]] (thisArgument, argumentsList)
9.5.13 [[Construct]] (argumentsList, newTarget)
9.5.14 ProxyCreate (target, handler)

10 ECMAScript Language: Source Code

10.1 Source Text
10.1.1 SS: UTF16Encoding (cp)
10.1.2 SS: UTF16Decode(lead, trail)

10.2 Types of Source Code

10.2.1 Strict Mode Code
10.2.2 Non-ECMAScript Functions
11 ECMAScript Language: Lexical Grammar
11.1 Unicode Format-Control Characters
11.2 White Space
11.3 Line Terminators
11.4 Comments
11.5 Tokens
11.6 Names and Keywords
11.6.1 Identifier Names
11.6.1.1 SS: Early Errors
11.6.1.2 SS: StringValue
11.6.2 Reserved Words
11.6.2.1 Keywords
11.6.2.2 Future Reserved Words
11.7 Punctuators
11.8 Literals
11.8.1 Null Literals
11.8.2 Boolean Literals
11.8.3 Numeric Literals
11.8.3.1 SS: MV
11.8.4 String Literals
11.8.4.1 SS: Early Errors
11.8.4.2 SS: StringValue
11.8.4.3SS: SV
11.8.5 Regular Expression Literals
11.8.5.1 SS: Early Errors
11.8.5.2 SS: BodyText
11.8.5.3 SS: FlagText
11.8.6 Template Literal Lexical Components
11.8.6.1 SS: TV and TRV
11.9 Automatic Semicolon Insertion
11.9.1 Rules of Automatic Semicolon Insertion
11.9.2 Examples of Automatic Semicolon Insertion
12 ECMAScript Language: Expressions
12.1 Identifiers
12.1.1 SS: Early Errors
12.1.2 SS: BoundNames
12.1.3 SS: IsValidSimpleAssignmentTarget
12.1.4 SS: StringValue
12.1.5 RS: Bindinglnitialization
12.1.5.1 RS: InitializeBoundName(name, value, environment)
12.1.6 RS: Evaluation
12.2 Primary Expression
12.2.1 Semantics
12.2.1.1 SS: CoveredParenthesizedExpression
12.2.1.2 SS: HasName
12.2.1.3 SS: IsFunctionDefinition
12.2.1.4 SS: IsldentifierRef
12.2.1.5 SS: IsValidSimpleAssignmentTarget
12.2.2 The this Keyword
12.2.2.1 RS: Evaluation
12.2.3 Identifier Reference
12.2.4 Literals

12.2.4.1 RS: Evaluation
12.2.5 Array Initializer
12.2.5.1 SS: ElisionWidth
12.2.5.2 RS: ArrayAccumulation
12.2.5.3 RS: Evaluation
12.2.6 Object Initializer
12.2.6.1 SS: Early Errors
12.2.6.2 SS: ComputedPropertyContains
12.2.6.3 SS: Contains
12.2.6.4 SS: HasComputedPropertyKey
12.2.6.5 SS: IsComputedPropertyKey
12.2.6.6 SS: PropName
12.2.6.7 SS: PropertyNameList
12.2.6.8 RS: Evaluation
12.2.6.9 RS: PropertyDefinitionEvaluation
12.2.7 Function Defining Expressions
12.2.8 Regular Expression Literals
12.2.8.1 SS: Early Errors
12.2.8.2 RS: Evaluation
12.2.9 Template Literals
12.2.9.1 SS: TemplateStrings
12.2.9.2 RS: ArgumentListEvaluation
12.2.9.3 RS: GetTemplateObject (templateLiteral)
12.2.9.4 RS: SubstitutionEvaluation
12.2.9.5 RS: Evaluation
12.2.10 The Grouping Operator
12.2.10.1 SS: Early Errors
12.2.10.2 SS: IsFunctionDefinition
12.2.10.3 SS: IsValidSimpleAssignmentTarget
12.2.10.4 RS: Evaluation
12.3 Left-Hand-Side Expressions
12.3.1 Static Semantics
12.3.1.1 SS: Contains
12.3.1.2 SS: IsFunctionDefinition
12.3.1.3 SS: IsDestructuring
12.3.1.4 SS: IsldentifierRef
12.3.1.5 SS: IsValidSimpleAssignmentTarget
12.3.2 Property Accessors
12.3.2.1 RS: Evaluation
12.3.3 The new Operator
12.3.3.1 RS: Evaluation
12.3.3.1.1 RS: EvaluateNew(constructProduction, arguments)
12.3.4 Function Calls
12.3.4.1 RS: Evaluation
12.3.4.2 RS: EvaluateCall(ref, arguments, tailPosition)
12.3.4.3 RS: EvaluateDirectCall(func, thisValue, arguments, tailPosition)
12.3.5 The super Keyword
12.3.5.1 RS: Evaluation
12.3.5.2 RS: GetSuperConstructor ()
12.3.5.3 RS: MakeSuperPropertyReference(propertyKey, strict)
12.3.6 Argument Lists
12.3.6.1 RS: ArgumentListEvaluation
12.3.7 Tagged Templates
12.3.7.1 RS: Evaluation

12.3.8 Meta Properties
12.3.8.1 RS: Evaluation
12.4 Update Expressions
12.4.1 SS: Early Errors
12.4.2 SS: IsFunctionDefinition
12.4.3 SS: IsValidSimpleAssignmentTarget
12.4.4 Postfix Increment Operator
12.4.4.1 RS: Evaluation
12.4.5 Postfix Decrement Operator
12.4.5.1 RS: Evaluation
12.4.6 Prefix Increment Operator
12.4.6.1 RS: Evaluation
12.4.7 Prefix Decrement Operator
12.4.7.1 RS: Evaluation
12.5 Unary Operators
12.5.1 SS: IsFunctionDefinition
12.5.2 SS: IsValidSimpleAssignmentTarget
12.5.3 The delete Operator
12.5.3.1 SS: Early Errors
12.5.3.2 RS: Evaluation
12.5.4 The void Operator
12.5.4.1 RS: Evaluation
12.5.5 The typeof Operator
12.5.5.1 RS: Evaluation
12.5.6 Unary + Operator
12.5.6.1 RS: Evaluation
12.5.7 Unary - Operator
12.5.7.1 RS: Evaluation
12.5.8 Bitwise NOT Operator (~)
12.5.8.1 RS: Evaluation
12.5.9 Logical NOT Operator (!)
12.5.9.1 RS: Evaluation
12.6 Exponentiation Operator
12.6.1 SS: IsFunctionDefinition
12.6.2 SS: IsValidSimpleAssignmentTarget
12.6.3 RS: Evaluation
12.7 Multiplicative Operators
12.7.1 SS: IsFunctionDefinition
12.7.2 SS: IsValidSimpleAssignmentTarget
12.7.3 RS: Evaluation
12.7.3.1 Applying the * Operator
12.7.3.2 Applying the / Operator
12.7.3.3 Applying the % Operator
12.7.3.4 Applying the ** Operator
12.8 Additive Operators
12.8.1 SS: IsFunctionDefinition
12.8.2 SS: IsValidSimpleAssignmentTarget
12.8.3 The Addition Operator (+)
12.8.3.1 RS: Evaluation
12.8.4 The Subtraction Operator (-)
12.8.4.1 RS: Evaluation
12.8.5 Applying the Additive Operators to Numbers
12.9 Bitwise Shift Operators

12.9.1 SS: IsFunctionDefinition
12.9.2 SS: IsValidSimpleAssignmentTarget
12.9.3 The Left Shift Operator (<<)
12.9.3.1 RS: Evaluation
12.9.4 The Signed Right Shift Operator (>>)
12.9.4.1 RS: Evaluation
12.9.5 The Unsigned Right Shift Operator (>>>)
12.9.5.1 RS: Evaluation
12.10 Relational Operators
12.10.1 SS: IsFunctionDefinition
12.10.2 SS: IsValidSimpleAssignmentTarget
12.10.3 RS: Evaluation
12.10.4 RS: InstanceofOperator(O0, C)
12.11 Equality Operators
12.11.1 SS: IsFunctionDefinition
12.11.2 SS: IsValidSimpleAssignmentTarget
12.11.3 RS: Evaluation
12.12 Binary Bitwise Operators
12.12.1 SS: IsFunctionDefinition
12.12.2 SS: IsValidSimpleAssignmentTarget
12.12.3 RS: Evaluation
12.13 Binary Logical Operators
12.13.1 SS: IsFunctionDefinition
12.13.2 SS: IsValidSimpleAssignmentTarget
12.13.3 RS: Evaluation
12.14 Conditional Operator (? :)
12.14.1 SS: IsFunctionDefinition
12.14.2 SS: IsValidSimpleAssignmentTarget
12.14.3 RS: Evaluation
12.15 Assignment Operators
12.15.1 SS: Early Errors
12.15.2 SS: IsFunctionDefinition
12.15.3 SS: IsValidSimpleAssignmentTarget
12.15.4 RS: Evaluation
12.15.5 Destructuring Assignment
12.15.5.1 SS: Early Errors
12.15.5.2 RS: DestructuringAssignmentEvaluation
12.15.5.3 RS: IteratorDestructuringAssignmentEvaluation
12.15.5.4 RS: KeyedDestructuringAssignmentEvaluation
12.16 Comma Operator (,)
12.16.1 SS: IsFunctionDefinition
12.16.2 SS: IsValidSimpleAssignmentTarget
12.16.3 RS: Evaluation
13 ECMAScript Language: Statements and Declarations
13.1 Statement Semantics
13.1.1 SS: ContainsDuplicateLabels
13.1.2 SS: ContainsUndefinedBreakTarget
13.1.3 SS: ContainsUndefinedContinueTarget
13.1.4 SS: DeclarationPart
13.1.5 SS: VarDeclaredNames
13.1.6 SS: VarScopedDeclarations
13.1.7 RS: LabelledEvaluation
13.1.8 RS: Evaluation
13.2 Block

13.2.1 SS: Early Errors
13.2.2 SS: ContainsDuplicateLabels
13.2.3 SS: ContainsUndefinedBreakTarget
13.2.4 SS: ContainsUndefinedContinueTarget
13.2.5 SS: LexicallyDeclaredNames
13.2.6 SS: LexicallyScopedDeclarations
13.2.7 SS: TopLevelLexicallyDeclaredNames
13.2.8 SS: TopLevelLexicallyScopedDeclarations
13.2.9 SS: TopLevelVarDeclaredNames
13.2.10 SS: TopLevelVarScopedDeclarations
13.2.11 SS: VarDeclaredNames
13.2.12 SS: VarScopedDeclarations
13.2.13 RS: Evaluation
13.2.14 RS: BlockDeclarationInstantiation(code, env)
13.3 Declarations and the Variable Statement
13.3.1 Let and Const Declarations
13.3.1.1 SS: Early Errors
13.3.1.2 SS: BoundNames
13.3.1.3 SS: IsConstantDeclaration
13.3.1.4 RS: Evaluation
13.3.2 Variable Statement
13.3.2.1 SS: BoundNames
13.3.2.2 SS: VarDeclaredNames
13.3.2.3 SS: VarScopedDeclarations
13.3.2.4 RS: Evaluation
13.3.3 Destructuring Binding Patterns
13.3.3.1 SS: BoundNames
13.3.3.2 SS: ContainsExpression
13.3.3.3 SS: HaslInitializer
13.3.3.4 SS: IsSimpleParameterList
13.3.3.5 RS: BindinglInitialization
13.3.3.6 RS: IteratorBindingInitialization
13.3.3.7 RS: KeyedBindinglInitialization
13.4 Empty Statement
13.4.1 RS: Evaluation
13.5 Expression Statement
13.5.1 RS: Evaluation
13.6 The if Statement
13.6.1 SS: Early Errors
13.6.2 SS: ContainsDuplicateLabels
13.6.3 SS: ContainsUndefinedBreakTarget
13.6.4 SS: ContainsUndefinedContinueTarget
13.6.5 SS: VarDeclaredNames
13.6.6 SS: VarScopedDeclarations
13.6.7 RS: Evaluation
13.7 Iteration Statements
13.7.1 Semantics
13.7.1.1 SS: Early Errors
13.7.1.2 RS: LoopContinues(completion, labelSet)
13.7.2 The do-while Statement
13.7.2.1 SS: ContainsDuplicateLabels
13.7.2.2 SS: ContainsUndefinedBreakTarget
13.7.2.3 SS: ContainsUndefinedContinueTarget
13.7.2.4 SS: VarDeclaredNames

13.7.2.5 SS: VarScopedDeclarations
13.7.2.6 RS: LabelledEvaluation
13.7.3 The while Statement
13.7.3.1 SS: ContainsDuplicateLabels
13.7.3.2 SS: ContainsUndefinedBreakTarget
13.7.3.3 SS: ContainsUndefinedContinueTarget
13.7.3.4 SS: VarDeclaredNames
13.7.3.5 SS: VarScopedDeclarations
13.7.3.6 RS: LabelledEvaluation
13.7.4 The for Statement
13.7.4.1 SS: Early Errors
13.7.4.2 SS: ContainsDuplicateLabels
13.7.4.3 SS: ContainsUndefinedBreakTarget
13.7.4.4 SS: ContainsUndefinedContinueTarget
13.7.4.5 SS: VarDeclaredNames
13.7.4.6 SS: VarScopedDeclarations
13.7.4.7 RS: LabelledEvaluation
13.7.4.8 RS: ForBodyEvaluation(test, increment, stmt, perlterationBindings, labelSet)
13.7.4.9 RS: CreatePerlterationEnvironment(periterationBindings)
13.7.5 The for-in and for-of Statements
13.7.5.1 SS: Early Errors
13.7.5.2 SS: BoundNames
13.7.5.3 SS: ContainsDuplicateLabels
13.7.5.4 SS: ContainsUndefinedBreakTarget
13.7.5.5 SS: ContainsUndefinedContinueTarget
13.7.5.6 SS: IsDestructuring
13.7.5.7 SS: VarDeclaredNames
13.7.5.8 SS: VarScopedDeclarations
13.7.5.9 RS: Bindinglnitialization
13.7.5.10 RS: BindingInstantiation
13.7.5.11 RS: LabelledEvaluation
13.7.5.12 RS: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)
13.7.5.13 RS: ForIn/OfBodyEvaluation (lhs, stmt, iterator, lhsKind, labelSet)
13.7.5.14 RS: Evaluation
13.7.5.15 EnumerateObjectProperties (0)
13.8 The continue Statement
13.8.1 SS: Early Errors
13.8.2 SS: ContainsUndefinedContinueTarget
13.8.3 RS: Evaluation
13.9 The break Statement
13.9.1 SS: Early Errors
13.9.2 SS: ContainsUndefinedBreakTarget
13.9.3 RS: Evaluation
13.10 The return Statement
13.10.1 RS: Evaluation
13.11 The with Statement
13.11.1 SS: Early Errors
13.11.2 SS: ContainsDuplicateLabels
13.11.3 SS: ContainsUndefinedBreakTarget
13.11.4 SS: ContainsUndefinedContinueTarget
13.11.5 SS: VarDeclaredNames
13.11.6 SS: VarScopedDeclarations
13.11.7 RS: Evaluation
13.12 The switch Statement

13.12.1 SS: Early Errors
13.12.2 SS: ContainsDuplicateLabels
13.12.3 SS: ContainsUndefinedBreakTarget
13.12.4 SS: ContainsUndefinedContinueTarget
13.12.5 SS: LexicallyDeclaredNames
13.12.6 SS: LexicallyScopedDeclarations
13.12.7 SS: VarDeclaredNames
13.12.8 SS: VarScopedDeclarations
13.12.9 RS: CaseBlockEvaluation
13.12.10 RS: CaseSelectorEvaluation
13.12.11 RS: Evaluation

13.13 Labelled Statements
13.13.1 SS: Early Errors
13.13.2 SS: ContainsDuplicateLabels
13.13.3 SS: ContainsUndefinedBreakTarget
13.13.4 SS: ContainsUndefinedContinueTarget
13.13.5 SS: IsLabelledFunction (stmt)
13.13.6 SS: LexicallyDeclaredNames
13.13.7 SS: LexicallyScopedDeclarations
13.13.8 SS: TopLevelLexicallyDeclaredNames
13.13.9 SS: TopLevelLexicallyScopedDeclarations
13.13.10 SS: TopLevelVarDeclaredNames
13.13.11 SS: TopLevelVarScopedDeclarations
13.13.12 SS: VarDeclaredNames
13.13.13 SS: VarScopedDeclarations
13.13.14 RS: LabelledEvaluation
13.13.15 RS: Evaluation

13.14 The throw Statement
13.14.1 RS: Evaluation

13.15 The try Statement
13.15.1 SS: Early Errors
13.15.2 SS: ContainsDuplicateLabels
13.15.3 SS: ContainsUndefinedBreakTarget
13.15.4 SS: ContainsUndefinedContinueTarget
13.15.5 SS: VarDeclaredNames
13.15.6 SS: VarScopedDeclarations
13.15.7 RS: CatchClauseEvaluation
13.15.8 RS: Evaluation

13.16 The debugger Statement
13.16.1 RS: Evaluation

14 ECMAScript Language: Functions and Classes

14.1 Function Definitions
14.1.1 Directive Prologues and the Use Strict Directive
14.1.2 SS: Early Errors
14.1.3 SS: BoundNames
14.1.4 SS: Contains
14.1.5 SS: ContainsExpression
14.1.6 SS: ContainsUseStrict
14.1.7 SS: ExpectedArgumentCount
14.1.8 SS: Haslnitializer
14.1.9 SS: HasName
14.1.10 SS: IsAnonymousFunctionDefinition (production)
14.1.11 SS: IsConstantDeclaration
14.1.12 SS: IsFunctionDefinition

14.1.13 SS: IsSimpleParameterList
14.1.14 SS: LexicallyDeclaredNames
14.1.15 SS: LexicallyScopedDeclarations
14.1.16 SS: VarDeclaredNames
14.1.17 SS: VarScopedDeclarations
14.1.18 RS: EvaluateBody
14.1.19 RS: IteratorBindingInitialization
14.1.20 RS: InstantiateFunctionObject
14.1.21 RS: Evaluation
14.2 Arrow Function Definitions
14.2.1 SS: Early Errors
14.2.2 SS: BoundNames
14.2.3 SS: Contains
14.2.4 SS: ContainsExpression
14.2.5 SS: ContainsUseStrict
14.2.6 SS: ExpectedArgumentCount
14.2.7 SS: HasName
14.2.8 SS: IsSimpleParameterList
14.2.9 SS: CoveredFormalsList
14.2.10 SS: LexicallyDeclaredNames
14.2.11 SS: LexicallyScopedDeclarations
14.2.12 SS: VarDeclaredNames
14.2.13 SS: VarScopedDeclarations
14.2.14 RS: IteratorBindingInitialization
14.2.15 RS: EvaluateBody
14.2.16 RS: Evaluation
14.3 Method Definitions
14.3.1 SS: Early Errors
14.3.2 SS: ComputedPropertyContains
14.3.3 SS: ExpectedArgumentCount
14.3.4 SS: HasComputedPropertyKey
14.3.5 SS: HasDirectSuper
14.3.6 SS: PropName
14.3.7 SS: SpecialMethod
14.3.8 RS: DefineMethod
14.3.9 RS: PropertyDefinitionEvaluation
14.4 Generator Function Definitions
14.4.1 SS: Early Errors
14.4.2 SS: BoundNames
14.4.3 SS: ComputedPropertyContains
14.4.4 SS: Contains
14.4.5 SS: HasComputedPropertyKey
14.4.6 SS: HasDirectSuper
14.4.7 SS: HasName
14.4.8 SS: IsConstantDeclaration
14.4.9 SS: IsFunctionDefinition
14.4.10 SS: PropName
14.4.11 RS: EvaluateBody
14.4.12 RS: InstantiateFunctionObject
14.4.13 RS: PropertyDefinitionEvaluation
14.4.14 RS: Evaluation
14.5 Class Definitions
14.5.1 SS: Early Errors
14.5.2 SS: BoundNames

14.5.3 SS: ConstructorMethod
14.5.4 SS: Contains
14.5.5 SS: ComputedPropertyContains
14.5.6 SS: HasName
14.5.7 SS: IsConstantDeclaration
14.5.8 SS: IsFunctionDefinition
14.5.9 SS: IsStatic
14.5.10 SS: NonConstructorMethodDefinitions
14.5.11 SS: PrototypePropertyNamelList
14.5.12 SS: PropName
14.5.13 SS: StaticPropertyNameList
14.5.14 RS: ClassDefinitionEvaluation
14.5.15 RS: BindingClassDeclarationEvaluation
14.5.16 RS: Evaluation
14.6 Tail Position Calls
14.6.1 SS: IsInTailPosition(nonterminal)
14.6.2 SS: HasProductionInTailPosition
14.6.2.1 Statement Rules
14.6.2.2 Expression Rules
14.6.3 RS: PrepareForTailCall ()
15 ECMAScript Language: Scripts and Modules
15.1 Scripts
15.1.1 SS: Early Errors
15.1.2 SS: IsStrict
15.1.3 SS: LexicallyDeclaredNames
15.1.4 SS: LexicallyScopedDeclarations
15.1.5 SS: VarDeclaredNames
15.1.6 SS: VarScopedDeclarations
15.1.7 RS: Evaluation
15.1.8 Script Records
15.1.9 ParseScript (sourceText, realm, hostDefined)
15.1.10 ScriptEvaluation (scriptRecord)
15.1.11 RS: GlobalDeclarationInstantiation (script, env)
15.1.12 RS: ScriptEvaluation]ob (sourceText, hostDefined)
15.2 Modules
15.2.1 Module Semantics
15.2.1.1 SS: Early Errors
15.2.1.2 SS: ContainsDuplicateLabels
15.2.1.3 SS: ContainsUndefinedBreakTarget
15.2.1.4 SS: ContainsUndefinedContinueTarget
15.2.1.5 SS: ExportedBindings
15.2.1.6 SS: ExportedNames
15.2.1.7 SS: ExportEntries
15.2.1.8 SS: ImportEntries
15.2.1.9 SS: ImportedLocalNames (importEntries)
15.2.1.10 SS: ModuleRequests
15.2.1.11 SS: LexicallyDeclaredNames
15.2.1.12 SS: LexicallyScopedDeclarations
15.2.1.13 SS: VarDeclaredNames
15.2.1.14 SS: VarScopedDeclarations
15.2.1.15 Abstract Module Records
15.2.1.16 Source Text Module Records
15.2.1.16.1 ParseModule (sourceText, realm, hostDefined)
15.2.1.16.2 GetExportedNames(exportStarSet) Concrete Method

15.2.1.16.3 ResolveExport(exportName, resolveSet, exportStarSet) Concrete Method
15.2.1.16.4 ModuleDeclarationInstantiation() Concrete Method
15.2.1.16.5 ModuleEvaluation() Concrete Method
15.2.1.17 RS: HostResolvelmportedModule (referencingModule, specifier)
15.2.1.18 RS: GetModuleNamespace(module)
15.2.1.19 RS: TopLevelModuleEvaluation]ob (sourceText, hostDefined)
15.2.1.20 RS: Evaluation
15.2.2 Imports
15.2.2.1 SS: Early Errors
15.2.2.2 SS: BoundNames
15.2.2.3 SS: ImportEntries
15.2.2.4 SS: ImportEntriesForModule
15.2.2.5 SS: ModuleRequests
15.2.3 Exports
15.2.3.1 SS: Early Errors
15.2.3.2 SS: BoundNames
15.2.3.3 SS: ExportedBindings
15.2.3.4 SS: ExportedNames
15.2.3.5 SS: ExportEntries
15.2.3.6 SS: ExportEntriesForModule
15.2.3.7 SS: IsConstantDeclaration
15.2.3.8 SS: LexicallyScopedDeclarations
15.2.3.9 SS: ModuleRequests
15.2.3.10 SS: ReferencedBindings
15.2.3.11 RS: Evaluation
16 Error Handling and Language Extensions
16.1 HostReportErrors (errorList)
16.2 Forbidden Extensions
17 ECMAScript Standard Built-in Objects
18 The Global Object
18.1 Value Properties of the Global Object
18.1.1 Infinity
18.1.2 NaN
18.1.3 undefined
18.2 Function Properties of the Global Object
18.2.1 eval (x)
18.2.1.1 RS: PerformEval(x, evalRealm, strictCaller, direct)
18.2.1.2 RS: EvalDeclarationInstantiation(body, varEnv, lexEnv, strict)
18.2.2 isFinite (number)
18.2.3 isNaN (number)
18.2.4 parseFloat (string)
18.2.5 parselnt (string, radix)
18.2.6 URI Handling Functions
18.2.6.1 URI Syntax and Semantics
18.2.6.1.1 RS: Encode (string, unescapedSet)
18.2.6.1.2 RS: Decode (string, reservedSet)
18.2.6.2 decodeURI (encodedURI)
18.2.6.3 decodeURIComponent (encodedURIComponent)
18.2.6.4 encodeURI (uri)
18.2.6.5 encodeURIComponent (uriComponent)
18.3 Constructor Properties of the Global Object
18.3.1 Array (...)
18.3.2 ArrayBuffer (...)
18.3.3 Boolean (...)

18.3.4 DataView (...)

18.3.5Date (...)

18.3.6 Error (...)

18.3.7 EvalError (...)

18.3.8 Float32Array (...)

18.3.9 Float64Array (. ..)

18.3.10 Function (...)

18.3.11 Int8Array (...)

18.3.12 Int16Array (...)

18.3.13 Int32Array (...)

18.3.14 Map (...)

18.3.15 Number (...)

18.3.16 Object (...)

18.3.17 Proxy (...)

18.3.18 Promise (...)

18.3.19 RangeError (...)

18.3.20 ReferenceError (...)

18.3.21 RegExp (...)

18.3.22 Set (...)

18.3.23 String (...)

18.3.24 Symbol (...)

18.3.25 SyntaxError (...)

18.3.26 TypeError (...)

18.3.27 Uint8Array (...)

18.3.28 Uint8ClampedArray (. ..)

18.3.29 Uint16Array (...)

18.3.30 Uint32Array (...)

18.3.31 URIError (...)

18.3.32 WeakMap (...)

18.3.33 WeakSet (...)

18.4 Other Properties of the Global Object

18.4.1 JSON

18.4.2 Math

18.4.3 Reflect

19 Fundamental Objects
19.1 Object Objects

19.1.1 The Object Constructor
19.1.1.1 Object ([value])

19.1.2 Properties of the Object Constructor
19.1.2.1 Object.assign (target, ..sources)
19.1.2.2 Object.create (O, Properties)
19.1.2.3 Object.defineProperties (O, Properties)

19.1.2.3.1 RS: ObjectDefineProperties (O, Properties)
19.1.2.4 Object.defineProperty (O, P, Attributes)
19.1.2.5 Object.freeze (0)
19.1.2.6 Object.getOwnPropertyDescriptor (O, P)
19.1.2.7 Object.getOwnPropertyNames (O)
19.1.2.8 Object.getOwnPropertySymbols (0)
19.1.2.8.1 RS: GetOwnPropertyKeys (O, Type)
19.1.2.9 Object.getPrototypeOf (0)
19.1.2.10 Object.is (valuel, value2)
19.1.2.11 Object.isExtensible (0)
19.1.2.12 Object.isFrozen (0)
19.1.2.13 Object.isSealed (0)

19.1.2.14 Object.keys (0)
19.1.2.15 Object.preventExtensions (0)
19.1.2.16 Object.prototype
19.1.2.17 Object.seal (0)
19.1.2.18 Object.setPrototypeOf (O, proto)
19.1.3 Properties of the Object Prototype Object
19.1.3.1 Object.prototype.constructor
19.1.3.2 Object.prototype.hasOwnProperty (V)
19.1.3.3 Object.prototype.isPrototypeOf (V)
19.1.3.4 Object.prototype.propertylsEnumerable (V)
19.1.3.5 Object.prototype.toLocaleString ([reservedl [, reserved2]])
19.1.3.6 Object.prototype.toString ()
19.1.3.7 Object.prototype.valueOf ()
19.1.4 Properties of Object Instances
19.2 Function Objects
19.2.1 The Function Constructor
19.2.1.1 Function (p1, p2, ..., pn, body)
19.2.1.1.1 RS: CreateDynamicFunction(constructor, newTarget, kind, args)
19.2.2 Properties of the Function Constructor
19.2.2.1 Function.length
19.2.2.2 Function.prototype
19.2.3 Properties of the Function Prototype Object
19.2.3.1 Function.prototype.apply (thisArg, argArray)
19.2.3.2 Function.prototype.bind (thisArg, ...args)
19.2.3.3 Function.prototype.call (thisArg, ...args)
19.2.3.4 Function.prototype.constructor
19.2.3.5 Function.prototype.toString ()
19.2.3.6 Function.prototype [@@hasInstance | (V)
19.2.4 Function Instances
19.2.4.1 length
19.2.4.2 name
19.2.4.3 prototype
19.3 Boolean Objects
19.3.1 The Boolean Constructor
19.3.1.1 Boolean (value)
19.3.2 Properties of the Boolean Constructor
19.3.2.1 Boolean.prototype
19.3.3 Properties of the Boolean Prototype Object
19.3.3.1 thisBooleanValue (value)
19.3.3.2 Boolean.prototype.constructor
19.3.3.3 Boolean.prototype.toString ()
19.3.3.4 Boolean.prototype.valueOf ()
19.3.4 Properties of Boolean Instances
19.4 Symbol Objects
19.4.1 The Symbol Constructor
19.4.1.1 Symbol ([description |)
19.4.2 Properties of the Symbol Constructor
19.4.2.1 Symbol.for (key)
19.4.2.2 Symbol.hasInstance
19.4.2.3 Symbol.isConcatSpreadable
19.4.2.4 Symbol.iterator
19.4.2.5 Symbol.keyFor (sym)
19.4.2.6 Symbol.match
19.4.2.7 Symbol.prototype

19.4.2.8 Symbol.replace
19.4.2.9 Symbol.search
19.4.2.10 Symbol.species
19.4.2.11 Symbol.split
19.4.2.12 Symbol.toPrimitive
19.4.2.13 Symbol.toStringTag
19.4.2.14 Symbol.unscopables
19.4.3 Properties of the Symbol Prototype Object
19.4.3.1 Symbol.prototype.constructor
19.4.3.2 Symbol.prototype.toString ()
19.4.3.2.1 RS: SymbolDescriptiveString (sym)
19.4.3.3 Symbol.prototype.valueOf ()
19.4.3.4 Symbol.prototype [@@toPrimitive | (hint)
19.4.3.5 Symbol.prototype [@@toStringTag |
19.4.4 Properties of Symbol Instances
19.5 Error Objects
19.5.1 The Error Constructor
19.5.1.1 Error (message)
19.5.2 Properties of the Error Constructor
19.5.2.1 Error.prototype
19.5.3 Properties of the Error Prototype Object
19.5.3.1 Error.prototype.constructor
19.5.3.2 Error.prototype.message
19.5.3.3 Error.prototype.name
19.5.3.4 Error.prototype.toString ()
19.5.4 Properties of Error Instances
19.5.5 Native Error Types Used in This Standard
19.5.5.1 EvalError
19.5.5.2 RangeError
19.5.5.3 ReferenceError
19.5.5.4 SyntaxError
19.5.5.5 TypeError
19.5.5.6 URIError
19.5.6 NativeError Object Structure
19.5.6.1 NativeError Constructors
19.5.6.1.1 NativeError (message)
19.5.6.2 Properties of the NativeError Constructors
19.5.6.2.1 NativeError.prototype
19.5.6.3 Properties of the NativeError Prototype Objects
19.5.6.3.1 NativeError.prototype.constructor
19.5.6.3.2 NativeError.prototype.message
19.5.6.3.3 NativeError.prototype.name
19.5.6.4 Properties of NativeError Instances
20 Numbers and Dates
20.1 Number Objects
20.1.1 The Number Constructor
20.1.1.1 Number (value)
20.1.2 Properties of the Number Constructor
20.1.2.1 Number.EPSILON
20.1.2.2 Number.isFinite (number)
20.1.2.3 Number.isinteger (number)
20.1.2.4 Number.isNaN (number)
20.1.2.5 Number.isSafelnteger (number)
20.1.2.6 Number.MAX_SAFE_INTEGER

20.1.2.7 NumberMAX_VALUE
20.1.2.8 Number.MIN_SAFE_INTEGER
20.1.2.9 Number.MIN_VALUE
20.1.2.10 Number.NaN
20.1.2.11 Number.NEGATIVE_INFINITY
20.1.2.12 Number.parseFloat (string)
20.1.2.13 Number.parselnt (string, radix)
20.1.2.14 Number.POSITIVE_INFINITY
20.1.2.15 Number.prototype

20.1.3 Properties of the Number Prototype Object
20.1.3.1 Number.prototype.constructor
20.1.3.2 Number.prototype.toExponential (fractionDigits)
20.1.3.3 Number.prototype.toFixed (fractionDigits)
20.1.3.4 Number.prototype.toLocaleString ([reserved1 [, reservedZ2]])
20.1.3.5 Number.prototype.toPrecision (precision)
20.1.3.6 Number.prototype.toString ([radix |)
20.1.3.7 Number.prototype.valueOf ()

20.1.4 Properties of Number Instances

20.2 The Math Object

20.2.1 Value Properties of the Math Object
20.2.1.1 Math.E
20.2.1.2 Math.LN10
20.2.1.3 Math.LN2
20.2.1.4 Math.LOG10E
20.2.1.5 Math.LOG2E
20.2.1.6 Math.PI
20.2.1.7 Math.SQRT1_2
20.2.1.8 Math.SQRT2
20.2.1.9 Math [@@toStringTag]

20.2.2 Function Properties of the Math Object
20.2.2.1 Math.abs (x)
20.2.2.2 Math.acos (x)
20.2.2.3 Math.acosh (x)
20.2.2.4 Math.asin (x)
20.2.2.5 Math.asinh (x)
20.2.2.6 Math.atan (x)
20.2.2.7 Math.atanh (x)
20.2.2.8 Math.atan2 (y, x)
20.2.2.9 Math.cbrt (x)
20.2.2.10 Math.ceil (x)
20.2.2.11 Math.clz32 (x)
20.2.2.12 Math.cos (x)
20.2.2.13 Math.cosh (x)
20.2.2.14 Math.exp (x)
20.2.2.15 Math.expm1 (x)
20.2.2.16 Math.floor (x)
20.2.2.17 Math.fround (x)
20.2.2.18 Math.hypot (valuel, value2, ..values)
20.2.2.19 Math.imul (x,y)
20.2.2.20 Math.log (x)
20.2.2.21 Math.loglp (x)
20.2.2.22 Math.log10 (x)
20.2.2.23 Math.log2 (x)
20.2.2.24 Math.max (valuel, value2, ..values)

20.2.2.25 Math.min (valuel, value2, ...values)
20.2.2.26 Math.pow (base, exponent)
20.2.2.27 Math.random ()
20.2.2.28 Math.round (x)
20.2.2.29 Math.sign (x)
20.2.2.30 Math.sin (x)
20.2.2.31 Math.sinh (x)
20.2.2.32 Math.sqrt (x)
20.2.2.33 Math.tan (x)
20.2.2.34 Math.tanh (x)
20.2.2.35 Math.trunc (x)
20.3 Date Objects

20.3.1 Overview of Date Objects and Definitions of Abstract Operations
20.3.1.1 Time Values and Time Range
20.3.1.2 Day Number and Time within Day
20.3.1.3 Year Number
20.3.1.4 Month Number
20.3.1.5 Date Number
20.3.1.6 Week Day
20.3.1.7 Local Time Zone Adjustment
20.3.1.8 Daylight Saving Time Adjustment
20.3.1.9 LocalTime (t)
20.3.1.10 UTC (¢t)
20.3.1.11 Hours, Minutes, Second, and Milliseconds
20.3.1.12 MakeTime (hour, min, sec, ms)
20.3.1.13 MakeDay (year, month, date)
20.3.1.14 MakeDate (day, time)
20.3.1.15 TimeClip (time)
20.3.1.16 Date Time String Format

20.3.1.16.1 Extended Years

20.3.2 The Date Constructor
20.3.2.1 Date (year, month [, date [, hours [, minutes [, seconds [,ms]]]]])
20.3.2.2 Date (value)
20.3.2.3 Date ()

20.3.3 Properties of the Date Constructor
20.3.3.1 Date.now ()
20.3.3.2 Date.parse (string)
20.3.3.3 Date.prototype
20.3.3.4 Date.UTC (year, month [, date [, hours [, minutes [, seconds [,ms|]]]])

20.3.4 Properties of the Date Prototype Object
20.3.4.1 Date.prototype.constructor
20.3.4.2 Date.prototype.getDate ()
20.3.4.3 Date.prototype.getDay ()
20.3.4.4 Date.prototype.getFullYear ()
20.3.4.5 Date.prototype.getHours ()
20.3.4.6 Date.prototype.getMilliseconds ()
20.3.4.7 Date.prototype.getMinutes ()
20.3.4.8 Date.prototype.getMonth ()
20.3.4.9 Date.prototype.getSeconds ()
20.3.4.10 Date.prototype.getTime ()
20.3.4.11 Date.prototype.getTimezoneOffset ()
20.3.4.12 Date.prototype.getUTCDate ()
20.3.4.13 Date.prototype.getUTCDay ()
20.3.4.14 Date.prototype.getUTCFullYear ()

20.3.4.15 Date.prototype.getUTCHours ()
20.3.4.16 Date.prototype.getUTCMilliseconds ()
20.3.4.17 Date.prototype.getUTCMinutes ()
20.3.4.18 Date.prototype.getUTCMonth ()
20.3.4.19 Date.prototype.getUTCSeconds ()
20.3.4.20 Date.prototype.setDate (date)
20.3.4.21 Date.prototype.setFullYear (year [, month [, date] |)
20.3.4.22 Date.prototype.setHours (hour [, min[,sec[, ms]]])
20.3.4.23 Date.prototype.setMilliseconds (ms)
20.3.4.24 Date.prototype.setMinutes (min [, sec [, ms]])
20.3.4.25 Date.prototype.setMonth (month [, date |)
20.3.4.26 Date.prototype.setSeconds (sec [, ms])
20.3.4.27 Date.prototype.setTime (time)
20.3.4.28 Date.prototype.setUTCDate (date)
20.3.4.29 Date.prototype.setUTCFullYear (year [, month [, date]])
20.3.4.30 Date.prototype.setUTCHours (hour [, min [,sec[, ms]]])
20.3.4.31 Date.prototype.setUTCMilliseconds (ms)
20.3.4.32 Date.prototype.setUTCMinutes (min [, sec [, ms]])
20.3.4.33 Date.prototype.setUTCMonth (month [, date |)
20.3.4.34 Date.prototype.setUTCSeconds (sec [, ms])
20.3.4.35 Date.prototype.toDateString ()
20.3.4.36 Date.prototype.tolSOString ()
20.3.4.37 Date.prototype.toJSON (key)
20.3.4.38 Date.prototype.toLocaleDateString ([reservedl [, reserved2]])
20.3.4.39 Date.prototype.toLocaleString ([reservedl [, reserved2] |)
20.3.4.40 Date.prototype.toLocaleTimeString ([reservedl [, reserved2]])
20.3.4.41 Date.prototype.toString ()
20.3.4.41.1 RS: ToDateString(tv)

20.3.4.42 Date.prototype.toTimeString ()
20.3.4.43 Date.prototype.toUTCString ()
20.3.4.44 Date.prototype.valueOf ()
20.3.4.45 Date.prototype [@@toPrimitive | (hint)

20.3.5 Properties of Date Instances

21 Text Processing
21.1 String Objects

21.1.1 The String Constructor
21.1.1.1 String (value)

21.1.2 Properties of the String Constructor
21.1.2.1 String.fromCharCode (...codeUnits)
21.1.2.2 String.fromCodePoint (...codePoints)
21.1.2.3 String.prototype
21.1.2.4 String.raw (template, ...substitutions)

21.1.3 Properties of the String Prototype Object
21.1.3.1 String.prototype.charAt (pos)
21.1.3.2 String.prototype.charCodeAt (pos)
21.1.3.3 String.prototype.codePointAt (pos)
21.1.3.4 String.prototype.concat (...args)
21.1.3.5 String.prototype.constructor
21.1.3.6 String.prototype.endsWith (searchString [, endPosition |)
21.1.3.7 String.prototype.includes (searchString [, position |)
21.1.3.8 String.prototype.indexOf (searchString [, position |)
21.1.3.9 String.prototype.lastIndexOf (searchString [, position |)
21.1.3.10 String.prototype.localeCompare (that [, reservedl [, reserved2 ||)
21.1.3.11 String.prototype.match (regexp)

21.1.3.12 String.prototype.normalize ([form])
21.1.3.13 String.prototype.repeat (count)
21.1.3.14 String.prototype.replace (searchValue, replaceValue)
21.1.3.14.1 RS: GetSubstitution(matched, str, position, captures, replacement)
21.1.3.15 String.prototype.search (regexp)
21.1.3.16 String.prototype.slice (start, end)
21.1.3.17 String.prototype.split (separator, limit)
21.1.3.17.1 RS: SplitMatch (S, g, R)
21.1.3.18 String.prototype.startsWith (searchString [, position |)
21.1.3.19 String.prototype.substring (start, end)
21.1.3.20 String.prototype.toLocaleLowerCase ([reserved1 [, reserved2 | |)
21.1.3.21 String.prototype.toLocaleUpperCase ([reservedl [, reserved2]])
21.1.3.22 String.prototype.toLowerCase ()
21.1.3.23 String.prototype.toString ()
21.1.3.24 String.prototype.toUpperCase ()
21.1.3.25 String.prototype.trim ()
21.1.3.26 String.prototype.valueOf ()
21.1.3.27 String.prototype [@@iterator] ()
21.1.4 Properties of String Instances
21.1.4.1 length
21.1.5 String Iterator Objects
21.1.5.1 CreateStringlterator Abstract Operation
21.1.5.2 The %StringlteratorPrototype% Object
21.1.5.2.1 %StringlteratorPrototype%.next ()
21.1.5.2.2 %StringlteratorPrototype% [@ @toStringTag |
21.1.5.3 Properties of String Iterator Instances
21.2 RegExp (Regular Expression) Objects
21.2.1 Patterns
21.2.1.1 SS: Early Errors
21.2.2 Pattern Semantics
21.2.2.1 Notation
21.2.2.2 Pattern
21.2.2.3 Disjunction
21.2.2.4 Alternative
21.2.2.5 Term
21.2.2.5.1 RS: RepeatMatcher Abstract Operation
21.2.2.6 Assertion
21.2.2.6.1 RS: IsWordChar Abstract Operation
21.2.2.7 Quantifier
21.2.2.8 Atom
21.2.2.8.1 RS: CharacterSetMatcher Abstract Operation
21.2.2.8.2 RS: Canonicalize (ch)
21.2.2.9 AtomEscape
21.2.2.10 CharacterEscape
21.2.2.11 DecimalEscape
21.2.2.12 CharacterClassEscape
21.2.2.13 CharacterClass
21.2.2.14 ClassRanges
21.2.2.15 NonemptyClassRanges
21.2.2.15.1 RS: CharacterRange Abstract Operation
21.2.2.16 NonemptyClassRangesNoDash
21.2.2.17 ClassAtom
21.2.2.18 ClassAtomNoDash
21.2.2.19 ClassEscape

21.2.3 The RegExp Constructor
21.2.3.1 RegExp (pattern, flags)
21.2.3.2 Abstract Operations for the RegExp Constructor
21.2.3.2.1 RS: RegExpAlloc (newTarget)
21.2.3.2.2 RS: RegExplnitialize (obj, pattern, flags)
21.2.3.2.3 RS: RegExpCreate (P, F)
21.2.3.2.4 RS: EscapeRegExpPattern (P, F)
21.2.4 Properties of the RegExp Constructor
21.2.4.1 RegExp.prototype
21.2.4.2 get RegExp [@@species |
21.2.5 Properties of the RegExp Prototype Object
21.2.5.1 RegExp.prototype.constructor
21.2.5.2 RegExp.prototype.exec (string)
21.2.5.2.1 RS: RegExpExec (R, S)
21.2.5.2.2 RS: RegExpBuiltinExec (R, S)
21.2.5.2.3 AdvanceStringIndex (S, index, unicode)
21.2.5.3 get RegExp.prototype.flags
21.2.5.4 get RegExp.prototype.global
21.2.5.5 get RegExp.prototype.ignoreCase
21.2.5.6 RegExp.prototype [@@match] (string)
21.2.5.7 get RegExp.prototype.multiline

21.2.5.8 RegExp.prototype [@@replace | (string, replaceValue)

21.2.5.9 RegExp.prototype [@@search] (string)
21.2.5.10 get RegExp.prototype.source
21.2.5.11 RegExp.prototype [@@split | (string, limit)
21.2.5.12 get RegExp.prototype.sticky
21.2.5.13 RegExp.prototype.test (S)
21.2.5.14 RegExp.prototype.toString ()
21.2.5.15 get RegExp.prototype.unicode

21.2.6 Properties of RegExp Instances
21.2.6.1 lastIndex

22 Indexed Collections
22.1 Array Objects

22.1.1 The Array Constructor
22.1.1.1 Array ()
22.1.1.2 Array (len)
22.1.1.3 Array (...items)

22.1.2 Properties of the Array Constructor
22.1.2.1 Array.from (items [, mapfn [, thisArg | |)
22.1.2.2 Array.isArray (arg)
22.1.2.3 Array.of (...items)
22.1.2.4 Array.prototype
22.1.2.5 get Array | @@species |

22.1.3 Properties of the Array Prototype Object
22.1.3.1 Array.prototype.concat (..arguments)

22.1.3.1.1 RS: IsConcatSpreadable (0)

22.1.3.2 Array.prototype.constructor
22.1.3.3 Array.prototype.copyWithin (target, start [, end])
22.1.3.4 Array.prototype.entries ()
22.1.3.5 Array.prototype.every (callbackfn [, thisArg |)
22.1.3.6 Array.prototype.fill (value [, start [,end]])
22.1.3.7 Array.prototype.filter (callbackfn [, thisArg |)
22.1.3.8 Array.prototype.find (predicate [, thisArg |)
22.1.3.9 Array.prototype.findIndex (predicate [, thisArg |)

22.1.3.10 Array.prototype.forEach (callbackfn [, thisArg |)
22.1.3.11 Array.prototype.includes (searchElement [, fromIndex |)
22.1.3.12 Array.prototype.indexOf (searchElement [, fromIndex |)
22.1.3.13 Array.prototype.join (separator)
22.1.3.14 Array.prototype.keys ()
22.1.3.15 Array.prototype.lastindexOf (searchElement [, fromIndex |)
22.1.3.16 Array.prototype.map (callbackfn [, thisArg |)
22.1.3.17 Array.prototype.pop ()
22.1.3.18 Array.prototype.push (...items)
22.1.3.19 Array.prototype.reduce (callbackfn [, initialValue |)
22.1.3.20 Array.prototype.reduceRight (callbackfn [, initialValue |)
22.1.3.21 Array.prototype.reverse ()
22.1.3.22 Array.prototype.shift ()
22.1.3.23 Array.prototype.slice (start, end)
22.1.3.24 Array.prototype.some (callbackfn [, thisArg |)
22.1.3.25 Array.prototype.sort (comparefn)
22.1.3.25.1 RS: SortCompare(x,y)
22.1.3.26 Array.prototype.splice (start, deleteCount, ...items)
22.1.3.27 Array.prototype.toLocaleString ([reservedl [, reserved2 |])
22.1.3.28 Array.prototype.toString ()
22.1.3.29 Array.prototype.unshift (...items)
22.1.3.30 Array.prototype.values ()
22.1.3.31 Array.prototype [@@iterator | ()
22.1.3.32 Array.prototype [@@unscopables |
22.1.4 Properties of Array Instances
22.1.4.1 length
22.1.5 Array Iterator Objects
22.1.5.1 CreateArraylterator Abstract Operation
22.1.5.2 The %ArraylteratorPrototype% Object
22.1.5.2.1 %ArraylteratorPrototype%.next()
22.1.5.2.2 %ArraylteratorPrototype% [@@toStringTag |
22.1.5.3 Properties of Array Iterator Instances
22.2 TypedArray Objects
22.2.1 The %TypedArray% Intrinsic Object
22.2.1.1 %TypedArray%()
22.2.2 Properties of the %TypedArray% Intrinsic Object
22.2.2.1 %TypedArray%.from (source [, mapfn [, thisArg]])
22.2.2.1.1 RS: IterableToArrayLike(items)
22.2.2.2 %TypedArray%.of (..items)
22.2.2.3 %TypedArray%.prototype
22.2.2.4 get % TypedArray% [@@species |
22.2.3 Properties of the %TypedArrayPrototype% Object
22.2.3.1 get % TypedArray%.prototype.buffer
22.2.3.2 get %TypedArray%.prototype.byteLength
22.2.3.3 get % TypedArray%.prototype.byteOffset
22.2.3.4 %TypedArray%.prototype.constructor
22.2.3.5 %TypedArray%.prototype.copyWithin (target, start [, end])
22.2.3.5.1 RS: ValidateTypedArray (O)
22.2.3.6 %TypedArray%.prototype.entries ()
22.2.3.7 %TypedArray%.prototype.every (callbackfn [, thisArg |)
22.2.3.8 %TypedArray%.prototype.fill (value [, start[,end]|])
22.2.3.9 %TypedArray%.prototype.filter (callbackfn [, thisArg])
22.2.3.10 %TypedArray%.prototype.find (predicate [, thisArg |)
22.2.3.11 %TypedArray%.prototype.findindex (predicate |, thisArg |)

22.2.3.12 %TypedArray%.prototype.forEach (callbackfn [, thisArg |)
22.2.3.13 %TypedArray%.prototype.indexOf (searchElement [, fromIndex |)
22.2.3.14 %TypedArray%.prototype.includes (searchElement [, fromIndex |)
22.2.3.15 %TypedArray%.prototype.join (separator)
22.2.3.16 %TypedArray%.prototype.keys ()
22.2.3.17 %TypedArray%.prototype.lastindexOf (searchElement [, fromIndex |)
22.2.3.18 get % TypedArray%.prototype.length
22.2.3.19 %TypedArray%.prototype.map (callbackfn [, thisArg |)
22.2.3.20 %TypedArray%.prototype.reduce (callbackfn [, initialValue |)
22.2.3.21 %TypedArray%.prototype.reduceRight (callbackfn [, initialValue |)
22.2.3.22 %TypedArray%.prototype.reverse ()
22.2.3.23 %TypedArray%.prototype.set (overloaded [, offset])
22.2.3.23.1 %TypedArray%.prototype.set (array [, offset])
22.2.3.23.2 %TypedArray%.prototype.set(typedArray [, offset |)
22.2.3.24 %TypedArray%.prototype.slice (start, end)
22.2.3.25 %TypedArray%.prototype.some (callbackfn [, thisArg |)
22.2.3.26 %TypedArray%.prototype.sort (comparefn)
22.2.3.27 %TypedArray%.prototype.subarray(begin, end)
22.2.3.28 %TypedArray%.prototype.toLocaleString ([reserved1 [, reserved2 | |)
22.2.3.29 %TypedArray%.prototype.toString ()
22.2.3.30 %TypedArray%.prototype.values ()
22.2.3.31 %TypedArray%.prototype [@@iterator | ()
22.2.3.32 get % TypedArray%.prototype [@@toStringTag |
22.2.4 The TypedArray Constructors
22.2.4.1 TypedArray ()
22.2.4.2 TypedArray (length)
22.2.4.2.1 RS: AllocateTypedArray (constructorName, newTarget, defaultProto | , length |)
22.2.4.2.2 RS: AllocateTypedArrayBuffer (O, length)
22.2.4.3 TypedArray (typedArray)
22.2.4.4 TypedArray (object)
22.2.4.5 TypedArray (buffer [, byteOffset | , length | |)
22.2.4.6 TypedArrayCreate (constructor, argumentList)
22.2.4.7 TypedArraySpeciesCreate (exemplar, argumentList)
22.2.5 Properties of the TypedArray Constructors
22.2.5.1 TypedArray.BYTES_PER_ELEMENT
22.2.5.2 TypedArray.prototype
22.2.6 Properties of TypedArray Prototype Objects
22.2.6.1 TypedArray.prototype. BYTES_PER_ELEMENT
22.2.6.2 TypedArray.prototype.constructor
22.2.7 Properties of TypedArray Instances
23 Keyed Collection
23.1 Map Objects
23.1.1 The Map Constructor
23.1.1.1 Map ([iterable])
23.1.2 Properties of the Map Constructor
23.1.2.1 Map.prototype
23.1.2.2 get Map [@@species |
23.1.3 Properties of the Map Prototype Object
23.1.3.1 Map.prototype.clear ()
23.1.3.2 Map.prototype.constructor
23.1.3.3 Map.prototype.delete (key)
23.1.3.4 Map.prototype.entries ()
23.1.3.5 Map.prototype.forEach (callbackfn [, thisArg |)
23.1.3.6 Map.prototype.get (key)

23.1.3.7 Map.prototype.has (key)
23.1.3.8 Map.prototype.keys ()
23.1.3.9 Map.prototype.set (key, value)
23.1.3.10 get Map.prototype.size
23.1.3.11 Map.prototype.values ()
23.1.3.12 Map.prototype [@@iterator | ()
23.1.3.13 Map.prototype [@@toStringTag |
23.1.4 Properties of Map Instances
23.1.5 Map Iterator Objects
23.1.5.1 CreateMaplterator Abstract Operation
23.1.5.2 The %MaplteratorPrototype% Object
23.1.5.2.1 %MaplteratorPrototype%.next ()
23.1.5.2.2 %MaplteratorPrototype% [@ @toStringTag |
23.1.5.3 Properties of Map Iterator Instances
23.2 Set Objects
23.2.1 The Set Constructor
23.2.1.1 Set ([iterable])
23.2.2 Properties of the Set Constructor
23.2.2.1 Set.prototype
23.2.2.2 get Set [@@species |
23.2.3 Properties of the Set Prototype Object
23.2.3.1 Set.prototype.add (value)
23.2.3.2 Set.prototype.clear ()
23.2.3.3 Set.prototype.constructor
23.2.3.4 Set.prototype.delete (value)
23.2.3.5 Set.prototype.entries ()
23.2.3.6 Set.prototype.forEach (callbackfn [, thisArg |)
23.2.3.7 Set.prototype.has (value)
23.2.3.8 Set.prototype.keys ()
23.2.3.9 get Set.prototype.size
23.2.3.10 Set.prototype.values ()
23.2.3.11 Set.prototype [@@iterator | ()
23.2.3.12 Set.prototype [@@toStringTag |
23.2.4 Properties of Set Instances
23.2.5 Set Iterator Objects
23.2.5.1 CreateSetlterator Abstract Operation
23.2.5.2 The %SetlteratorPrototype% Object
23.2.5.2.1 %SetlteratorPrototype%.next ()
23.2.5.2.2 %SetlteratorPrototype% [@@toStringTag |
23.2.5.3 Properties of Set Iterator Instances
23.3 WeakMap Objects
23.3.1 The WeakMap Constructor
23.3.1.1 WeakMap ([iterable])
23.3.2 Properties of the WeakMap Constructor
23.3.2.1 WeakMap.prototype
23.3.3 Properties of the WeakMap Prototype Object
23.3.3.1 WeakMap.prototype.constructor
23.3.3.2 WeakMap.prototype.delete (key)
23.3.3.3 WeakMap.prototype.get (key)
23.3.3.4 WeakMap.prototype.has (key)
23.3.3.5 WeakMap.prototype.set (key, value)
23.3.3.6 WeakMap.prototype [@@toStringTag |
23.3.4 Properties of WeakMap Instances
23.4 WeakSet Objects

23.4.1 The WeakSet Constructor
23.4.1.1 WeakSet ([iterable |)

23.4.2 Properties of the WeakSet Constructor
23.4.2.1 WeakSet.prototype

23.4.3 Properties of the WeakSet Prototype Object
23.4.3.1 WeakSet.prototype.add (value)
23.4.3.2 WeakSet.prototype.constructor
23.4.3.3 WeakSet.prototype.delete (value)
23.4.3.4 WeakSet.prototype.has (value)
23.4.3.5 WeakSet.prototype [@@toStringTag |

23.4.4 Properties of WeakSet Instances

24 Structured Data
24.1 ArrayBulffer Objects

24.1.1 Abstract Operations For ArrayBuffer Objects
24.1.1.1 AllocateArrayBuffer (constructor, byteLength)
24.1.1.2 IsDetachedBuffer (arrayBuffer)
24.1.1.3 DetachArrayBuffer (arrayBuffer)
24.1.1.4 CloneArrayBuffer (srcBuffer, srcByteOffset | , cloneConstructor |)
24.1.1.5 GetValueFromBuffer (arrayBuffer, bytelndex, type [, isLittleEndian |)
24.1.1.6 SetValuelnBuffer (arrayBuffer, bytelndex, type, value [, isLittleEndian |)

24.1.2 The ArrayBuffer Constructor
24.1.2.1 ArrayBuffer (length)

24.1.3 Properties of the ArrayBuffer Constructor
24.1.3.1 ArrayBufferisView (arg)
24.1.3.2 ArrayBuffer.prototype
24.1.3.3 get ArrayBuffer [@@species |

24.1.4 Properties of the ArrayBuffer Prototype Object
24.1.4.1 get ArrayBuffer.prototype.byteLength
24.1.4.2 ArrayBuffer.prototype.constructor
24.1.4.3 ArrayBuffer.prototype.slice (start, end)
24.1.4.4 ArrayBuffer.prototype [@@toStringTag |

24.1.5 Properties of the ArrayBuffer Instances

24.2 DataView Objects

24.2.1 Abstract Operations For DataView Objects
24.2.1.1 GetViewValue (view, requestindex, isLittleEndian, type)
24.2.1.2 SetViewValue (view, requestindex, isLittleEndian, type, value)

24.2.2 The DataView Constructor
24.2.2.1 DataView (buffer, byteOffset, byteLength)

24.2.3 Properties of the DataView Constructor
24.2.3.1 DataView.prototype

24.2.4 Properties of the DataView Prototype Object
24.2.4.1 get DataView.prototype.buffer
24.2.4.2 get DataView.prototype.byteLength
24.2.4.3 get DataView.prototype.byteOffset
24.2.4.4 DataView.prototype.constructor
24.2.4.5 DataView.prototype.getFloat32 (byteOffset [, littleEndian |)
24.2.4.6 DataView.prototype.getFloat64 (byteOffset [, littleEndian |)
24.2.4.7 DataView.prototype.getInt8 (byteOffset)
24.2.4.8 DataView.prototype.getInt16 (byteOffset [, littleEndian |)
24.2.4.9 DataView.prototype.getInt32 (byteOffset |, littleEndian |)
24.2.4.10 DataView.prototype.getUint8 (byteOffset)
24.2.4.11 DataView.prototype.getUint16 (byteOffset [, littleEndian |)
24.2.4.12 DataView.prototype.getUint32 (byteOffset [, littleEndian |)
24.2.4.13 DataView.prototype.setFloat32 (byteOffset, value [, littleEndian |)

24.2.4.14 DataView.prototype.setFloat64 (byteOffset, value [, littleEndian |)
24.2.4.15 DataView.prototype.setInt8 (byteOffset, value)
24.2.4.16 DataView.prototype.setint16 (byteOffset, value [, littleEndian |)
24.2.4.17 DataView.prototype.setInt32 (byteOffset, value [, littleEndian |)
24.2.4.18 DataView.prototype.setUint8 (byteOffset, value)
24.2.4.19 DataView.prototype.setUint16 (byteOffset, value [, littleEndian |)
24.2.4.20 DataView.prototype.setUint32 (byteOffset, value [, littleEndian |)
24.2.4.21 DataView.prototype [@@toStringTag |
24.2.5 Properties of DataView Instances
24.3 The JSON Object
24.3.1 JSON.parse (text [, reviver])
24.3.1.1 RS: Internalize]SONProperty(holder, name)
24.3.2 JSON.stringify (value [, replacer [, space |])
24.3.2.1 RS: Serialize]SONProperty (key, holder)
24.3.2.2 RS: Quote]SONString (value)
24.3.2.3 RS: Serialize]SONODbject (value)
24.3.2.4 RS: Serialize]SONArray (value)
24.3.3 JSON [@@toStringTag]
25 Control Abstraction Objects
25.1 Iteration
25.1.1 Common Iteration Interfaces
25.1.1.1 The Iterable Interface
25.1.1.2 The Iterator Interface
25.1.1.3 The IteratorResult Interface
25.1.2 The %]lteratorPrototype% Object
25.1.2.1 %lteratorPrototype% [@@iterator | ()
25.2 GeneratorFunction Objects
25.2.1 The GeneratorFunction Constructor
25.2.1.1 GeneratorFunction (p1, p2, ..., pn, body)
25.2.2 Properties of the GeneratorFunction Constructor
25.2.2.1 GeneratorFunction.length
25.2.2.2 GeneratorFunction.prototype
25.2.3 Properties of the GeneratorFunction Prototype Object
25.2.3.1 GeneratorFunction.prototype.constructor
25.2.3.2 GeneratorFunction.prototype.prototype
25.2.3.3 GeneratorFunction.prototype [@@toStringTag |
25.2.4 GeneratorFunction Instances
25.2.4.1 length
25.2.4.2 name
25.2.4.3 prototype
25.3 Generator Objects
25.3.1 Properties of Generator Prototype
25.3.1.1 Generator.prototype.constructor
25.3.1.2 Generator.prototype.next (value)
25.3.1.3 Generator.prototype.return (value)
25.3.1.4 Generator.prototype.throw (exception)
25.3.1.5 Generator.prototype [@@toStringTag |
25.3.2 Properties of Generator Instances
25.3.3 Generator Abstract Operations
25.3.3.1 GeneratorStart (generator, generatorBody)
25.3.3.2 GeneratorValidate (generator)
25.3.3.3 GeneratorResume (generator, value)
25.3.3.4 GeneratorResumeAbrupt (generator, abruptCompletion)
25.3.3.5 GeneratorYield (iterNextObj)

25.4 Promise Objects
25.4.1 Promise Abstract Operations
25.4.1.1 PromiseCapability Records
25.4.1.1.1 IfAbruptRejectPromise (value, capability)
25.4.1.2 PromiseReaction Records
25.4.1.3 CreateResolvingFunctions (promise)
25.4.1.3.1 Promise Reject Functions
25.4.1.3.2 Promise Resolve Functions
25.4.1.4 FulfillPromise (promise, value)
25.4.1.5 NewPromiseCapability (C)
25.4.1.5.1 GetCapabilitiesExecutor Functions
25.4.1.6 IsPromise (x)
25.4.1.7 RejectPromise (promise, reason)
25.4.1.8 TriggerPromiseReactions (reactions, argument)
25.4.1.9 HostPromiseRejectionTracker (promise, operation)
25.4.2 Promise Jobs
25.4.2.1 PromiseReaction]ob (reaction, argument)
25.4.2.2 PromiseResolveThenable]ob (promiseToResolve, thenable, then)
25.4.3 The Promise Constructor
25.4.3.1 Promise (executor)
25.4.4 Properties of the Promise Constructor
25.4.4.1 Promise.all (iterable)
25.4.4.1.1 RS: PerformPromiseAll(iteratorRecord, constructor, resultCapability)
25.4.4.1.2 Promise.all Resolve Element Functions
25.4.4.2 Promise.prototype
25.4.4.3 Promise.race (iterable)
25.4.4.3.1 RS: PerformPromiseRace (iteratorRecord, promiseCapability, C)
25.4.4.4 Promise.reject (1)
25.4.4.5 Promise.resolve (x)
25.4.4.6 get Promise [@@species |
25.4.5 Properties of the Promise Prototype Object
25.4.5.1 Promise.prototype.catch (onRejected)
25.4.5.2 Promise.prototype.constructor
25.4.5.3 Promise.prototype.then (onFulfilled, onRejected)
25.4.5.3.1 PerformPromiseThen (promise, onFulfilled, onRejected, resultCapability)
25.4.5.4 Promise.prototype [@@toStringTag |
25.4.6 Properties of Promise Instances
26 Reflection
26.1 The Reflect Object
26.1.1 Reflect.apply (target, thisArgument, argumentsList)
26.1.2 Reflect.construct (target, argumentsList [, newTarget |)
26.1.3 Reflect.defineProperty (target, propertyKey, attributes)
26.1.4 Reflect.deleteProperty (target, propertyKey)
26.1.5 Reflect.get (target, propertyKey [, receiver |)
26.1.6 Reflect.getOwnPropertyDescriptor (target, propertyKey)
26.1.7 Reflect.getPrototypeOf (target)
26.1.8 Reflect.has (target, propertyKey)
26.1.9 Reflect.isExtensible (target)
26.1.10 Reflect.ownKeys (target)
26.1.11 Reflect.preventExtensions (target)
26.1.12 Reflect.set (target, propertyKey, V [, receiver |)
26.1.13 Reflect.setPrototypeOf (target, proto)
26.2 Proxy Objects
26.2.1 The Proxy Constructor

26.2.1.1 Proxy (target, handler)

26.2.2 Properties of the Proxy Constructor
26.2.2.1 Proxy.revocable (target, handler)
26.2.2.1.1 Proxy Revocation Functions

26.3 Module Namespace Objects
26.3.1 @@toStringTag
26.3.2 [@@iterator | ()
A Grammar Summary
A.1 Lexical Grammar
A.2 Expressions
A.3 Statements
A.4 Functions and Classes
A.5 Scripts and Modules
A.6 Number Conversions
A.7 Universal Resource Identifier Character Classes
A.8 Regular Expressions
B Additional ECMAScript Features for Web Browsers
B.1 Additional Syntax

B.1.1 Numeric Literals
B.1.1.1 Static Semantics

B.1.2 String Literals
B.1.2.1 Static Semantics

B.1.3 HTML-like Comments

B.1.4 Regular Expressions Patterns
B.1.4.1 Pattern Semantics

B.1.4.1.1 RS: CharacterRangeOrUnion Abstract Operation
B.2 Additional Built-in Properties

B.2.1 Additional Properties of the Global Object
B.2.1.1 escape (string)

B.2.1.2 unescape (string)

B.2.2 Additional Properties of the Object.prototype Object
B.2.2.1 Object.prototype.__proto__

B.2.2.1.1 get Object.prototype._proto__
B.2.2.1.2 set Object.prototype.__proto__

B.2.3 Additional Properties of the String.prototype Object
B.2.3.1 String.prototype.substr (start, length)
B.2.3.2 String.prototype.anchor (name)

B.2.3.2.1 RS: CreateHTML (string, tag, attribute, value)
B.2.3.3 String.prototype.big ()
B.2.3.4 String.prototype.blink ()
B.2.3.5 String.prototype.bold ()
B.2.3.6 String.prototype.fixed ()
B.2.3.7 String.prototype.fontcolor (color)
B.2.3.8 String.prototype.fontsize (size)
B.2.3.9 String.prototype.italics ()
B.2.3.10 String.prototype.link (url)
B.2.3.11 String.prototype.small ()
B.2.3.12 String.prototype.strike ()
B.2.3.13 String.prototype.sub ()
B.2.3.14 String.prototype.sup ()

B.2.4 Additional Properties of the Date.prototype Object
B.2.4.1 Date.prototype.getYear ()

B.2.4.2 Date.prototype.setYear (year)
B.2.4.3 Date.prototype.toGMTString ()

B.2.5 Additional Properties of the RegExp.prototype Object
B.2.5.1 RegExp.prototype.compile (pattern, flags)
B.3 Other Additional Features
B.3.1 _proto__ Property Names in Object Initializers
B.3.2 Labelled Function Declarations
B.3.3 Block-Level Function Declarations Web Legacy Compatibility Semantics
B.3.3.1 Changes to FunctionDeclarationInstantiation
B.3.3.2 Changes to GlobalDeclarationInstantiation
B.3.3.3 Changes to EvalDeclarationInstantiation
B.3.4 FunctionDeclarations in IfStatement Statement Clauses
B.3.5 VariableStatements in Catch Blocks
C The Strict Mode of ECMAScript
D Corrections and Clarifications in ECMAScript 2015 with Possible Compatibility Impact
E Additions and Changes That Introduce Incompatibilities with Prior Editions
F Bibliography
G Copyright & Software License

Introduction

This Ecma Standard defines the ECMAScript 2016 Language. It is the seventh edition of the ECMAScript Language
Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the world's most widely used
general purpose programming languages. It is best known as the language embedded in web browsers but has also been

widely adopted for server and embedded applications.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape) and JScript
(Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company's Navigator 2.0
browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet

Explorer 3.0.

The development of the ECMAScript Language Specification started in November 1996. The first edition of this Ecma
Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition
of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in

nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control statements,
try/catch exception handling, tighter definition of errors, formatting for numeric output and minor changes in anticipation
future language growth. The third edition of the ECMAScript standard was adopted by the Ecma General Assembly of
December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World Wide Web where
it has become the programming language that is supported by essentially all web browsers. Significant work was done to
develop a fourth edition of ECMAScript. However, that work was not completed and not published as the fourth edition of

ECMAScript but some of it was incorporated into the development of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5th edition) codified de facto interpretations of the language
specification that have become common among browser implementations and added support for new features that had
emerged since the publication of the third edition. Such features include accessor properties, reflective creation and
inspection of objects, program control of property attributes, additional array manipulation functions, support for the JSON
object encoding format, and a strict mode that provides enhanced error checking and program security. The Fifth Edition was
adopted by the Ecma General Assembly of December 2009.

The fifth Edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international
standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor corrections and is the same text
as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for publication. However,
this was preceded by significant experimentation and language enhancement design efforts dating to the publication of the
third edition in 1999. In a very real sense, the completion of the sixth edition is the culmination of a fifteen year effort. The
goals for this addition included providing better support for large applications, library creation, and for use of ECMAScript as
a compilation target for other languages. Some of its major enhancements included modules, class declarations, lexical block
scoping, iterators and generators, promises for asynchronous programming, destructuring patterns, and proper tail calls. The
ECMAScript library of built-ins was expanded to support additional data abstractions including maps, sets, and arrays of
binary numeric values as well as additional support for Unicode supplemental characters in strings and regular expressions.
The built-ins were also made extensible via subclassing. The sixth edition provides the foundation for regular, incremental
language and library enhancements. The sixth edition was adopted by the General Assembly of June 2015.

This ECMAScript specification is the first ECMAScript edition released under Ecma TC39's new yearly release cadence and
open development process. A plain-text source document was built from the ECMAScript 2015 source document to serve as
the base for further development entirely on GitHub. Over the year of this standard's development, hundreds of pull requests

and issues were filed representing thousands of bug fixes, editorial fixes and other improvements. Additionally, numerous
software tools were developed to aid in this effort including Ecmarkup, Ecmarkdown, and Grammarkdown. This specification
also includes support for a new exponentiation operator and adds a new method to Array.prototype called includes.

Dozens of individuals representing many organizations have made very significant contributions within Ecma TC39 to the
development of this edition and to the prior editions. In addition, a vibrant community has emerged supporting TC39's
ECMAScript efforts. This community has reviewed numerous drafts, filed thousands of bug reports, performed
implementation experiments, contributed test suites, and educated the world-wide developer community about ECMAScript.
Unfortunately, it is impossible to identify and acknowledge every person and organization who has contributed to this effort.

Allen Wirfs-Brock
ECMA-262, 6! Edition Project Editor

Brian Terlson

ECMA-262, 7™ Edition Project Editor

Scope

This Standard defines the ECMAScript 2016 general purpose programming language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties, functions,
and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the Unicode Standard,
Version 8.0.0 or later and ISO/IEC 10646.

A conforming implementation of ECMAScript that provides an application programming interface that supports programs
that need to adapt to the linguistic and cultural conventions used by different human languages and countries must
implement the interface defined by the most recent edition of ECMA-402 that is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and functions beyond
those described in this specification. In particular, a conforming implementation of ECMAScript may provide properties not
described in this specification, and values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not described in this
specification. In particular, a conforming implementation of ECMAScript may support program syntax that makes use of the
“future reserved words” listed in subclause 11.6.2.2 of this specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden Extension in
subclause 16.2.

Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 10646:2003: Information Technology - Universal Multiple-Octet Coded Character Set (UCS) plus Amendment 1:2005,
Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional amendments and corrigenda, or successor

ECMA-402, ECMAScript 2015 Internationalization API Specification.
http://www.ecma-international.org/publications/standards/Ecma-402.htm

http://www.ecma-international.org/publications/standards/Ecma-402.htm

4.1

ECMA-404, The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-404.htm

Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating computational
objects within a host environment. ECMAScript as defined here is not intended to be computationally self-sufficient; indeed,
there are no provisions in this specification for input of external data or output of computed results. Instead, it is expected
that the computational environment of an ECMAScript program will provide not only the objects and other facilities
described in this specification but also certain environment-specific objects, whose description and behaviour are beyond
the scope of this specification except to indicate that they may provide certain properties that can be accessed and certain
functions that can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a general purpose
programming language. A scripting language is a programming language that is used to manipulate, customize, and automate
the facilities of an existing system. In such systems, useful functionality is already available through a user interface, and the
scripting language is a mechanism for exposing that functionality to program control. In this way, the existing system is said
to provide a host environment of objects and facilities, which completes the capabilities of the scripting language. A scripting
language is intended for use by both professional and non-professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages in
browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript is now used to
provide core scripting capabilities for a variety of host environments. Therefore the core language is specified in this
document apart from any particular host environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of programming tasks in many
different environments and scales. As the usage of ECMAScript has expanded, so has the features and facilities it provides.

ECMAScript is now a fully featured general propose programming language.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular C, Java™, Self,
and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages - C.

Gosling, James, Bill Joy and Guy Steele. The Java " Language Specification. Addison Wesley Publishing Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp. 227-241, Orlando,
FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance, objects that
represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and input/output. Further,
the host environment provides a means to attach scripting code to events such as change of focus, page and image loading,
unloading, error and abort, selection, form submission, and mouse actions. Scripting code appears within the HTML and the
displayed page is a combination of user interface elements and fixed and computed text and images. The scripting code is
reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing requests,
clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting together, it is
possible to distribute computation between the client and server while providing a customized user interface for a Web-
based application.

http://www.ecma-international.org/publications/standards/Ecma-404.htm

4.2

4.2.1

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the ECMAScript
execution environment.

ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is not part
of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript program is a
cluster of communicating objects. In ECMAScript, an object is a collection of zero or more properties each with attributes that
determine how each property can be used—for example, when the Writable attribute for a property is set to false, any
attempt by executed ECMAScript code to assign a different value to the property fails. Properties are containers that hold
other objects, primitive values, or functions. A primitive value is a member of one of the following built-in types: Undefined,
Null, Boolean, Number, String, and Symbol; an object is a member of the built-in type Object; and a function is a callable

object. A function that is associated with an object via a property is called a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These built-in objects
include the global object; objects that are fundamental to the runtime semantics of the language including Object,
Function, Boolean, Symbol, and various Error objects; objects that represent and manipulate numeric values including
Math, Number, and Date; the text processing objects String and RegExp; objects that are indexed collections of values
including Array and nine different kinds of Typed Arrays whose elements all have a specific numeric data representation;
keyed collections including Map and Set objects; objects supporting structured data including the JSON object,
ArrayBuffer, and DataView; objects supporting control abstractions including generator functions and Promise objects;
and, reflection objects including Proxy and Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations, multiplicative
operators, additive operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators,
binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported by modules which allow a program to be divided into multiple sequences of
statements and declarations. Each module explicitly identifies declarations it uses that need to be provided by other modules
and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-to-use
scripting language. For example, a variable is not required to have its type declared nor are types associated with properties,

and defined functions are not required to have their declarations appear textually before calls to them.
Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally class-based such as
those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation or via
constructors which create objects and then execute code that initializes all or part of them by assigning initial values to their
properties. Each constructor is a function that has a property named "prototype" that is used to implement prototype-
based inheritance and shared properties. Objects are created by using constructors in new expressions; for example,

new Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that depend

on the constructor. For example, Date () produces a string representation of the current date and time rather than an object.

Every object created by a constructor has an implicit reference (called the object's prototype) to the value of its constructor's
"prototype" property. Furthermore, a prototype may have a non-null implicit reference to its prototype, and so on; this is
called the prototype chain. When a reference is made to a property in an object, that reference is to the property of that name
in the first object in the prototype chain that contains a property of that name. In other words, first the object mentioned
directly is examined for such a property; if that object contains the named property, that is the property to which the
reference refers; if that object does not contain the named property, the prototype for that object is examined next; and so on.

4.2.2

Figure 1: Object/Prototype Relationships

i 4
""""" CF implicit prototype link
prototyp CF, |..i
Pl .
o2 CFP1 explicit prototype property
A
LLLLLTT cf1 cfz cfa cf4 eannad cfs snnnnnd
gl gl gl gl gl
a2 q2 q2 a2 a2

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and
inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, while structure,
behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its value.

Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfy, cfy, cf3, cfy, and cfs,.
Each of these objects contains properties named q1 and q2. The dashed lines represent the implicit prototype relationship;
so, for example, cf3's prototype is CFp,. The constructor, CF, has two properties itself, named P1 and P2, which are not visible
to CFp, cfy, cfy, cf3, cfy, or cfs. The property named CFP1 in CFp, is shared by cfy, cfy, cf3, cfy, and cfs (but not by CF), as are
any properties found in CFp's implicit prototype chain that are not named q1, g2, or CFP1. Notice that there is no implicit
prototype link between CF and CFy,.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning values to them. That
is, constructors are not required to name or assign values to all or any of the constructed object's properties. In the above
diagram, one could add a new shared property for cfy, cfy, cf3, cfy, and cfg by assigning a new value to the property in CFp,.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like abstractions based
upon a common pattern of constructor functions, prototype objects, and methods. The ECMAScript built-in objects
themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the ECMAScript language includes syntactic
class definitions that permit programmers to concisely define objects that conform to the same class-like abstraction pattern
used by the built-in objects.

The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict their usage of some
features available in the language. They might do so in the interests of security, to avoid what they consider to be error-prone
features, to get enhanced error checking, or for other reasons of their choosing. In support of this possibility, ECMAScript
defines a strict variant of the language. The strict variant of the language excludes some specific syntactic and semantic
features of the regular ECMAScript language and modifies the detailed semantics of some features. The strict variant also
specifies additional error conditions that must be reported by throwing error exceptions in situations that are not specified
as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode selection and use of
the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individual ECMAScript source text units.
Because strict mode is selected at the level of a syntactic source text unit, strict mode only imposes restrictions that have
local effect within such a source text unit. Strict mode does not restrict or modify any aspect of the ECMAScript semantics

that must operate consistently across multiple source text units. A complete ECMAScript program may be composed of both

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

strict mode and non-strict mode ECMAScript source text units. In this case, strict mode only applies when actually executing
code that is defined within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted
ECMAScript language and the strict variant of the ECMAScript language as defined by this specification. In addition, an
implementation must support the combination of unrestricted and strict mode source text units into a single composite

program.

Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

type

set of data values as defined in clause 6 of this specification

primitive value

member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause 6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.
constructor

function object that creates and initializes objects

NOTE The value of a constructor's prototype property is a prototype object that is used to implement inheritance

and shared properties.
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor's prototype property
for the purpose of resolving property references. The constructor's prototype property can be referenced by
the program expression constructor.prototype, and properties added to an object's prototype are shared,
through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an
explicitly specified prototype by using the Object.create built-in function.

ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all objects
exotic object

object that does not have the default behaviour for one or more of the essential internal methods

NOTE Any object that is not an ordinary object is an exotic object.

standard object

object whose semantics are defined by this specification

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

4.3.16

4.3.17

4.3.18

4.3.19

built-in object
object specified and supplied by an ECMAScript implementation

NOTE Standard built-in objects are defined in this specification. An ECMAScript implementation may specify and
supply additional kinds of built-in objects. A built-in constructor is a built-in object that is also a constructor.

undefined value

primitive value used when a variable has not been assigned a value
Undefined type

type whose sole value is the undefined value

null value

primitive value that represents the intentional absence of any object value
Null type

type whose sole value is the null value

Boolean value

member of the Boolean type

NOTE There are only two Boolean values, true and false
Boolean type

type consisting of the primitive values true and false

Boolean object

member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean value
as an argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object

can be coerced to a Boolean value.
String value

primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single 16-
bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values

except that they must be 16-bit unsigned integers.
String type
set of all possible String values
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as an
argument. The resulting object has an internal slot whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (21.1.1.1).

4.3.20

4.3.21

4.3.22

4.3.23

4.3.24

4.3.25

4.3.26

4.3.27

4.3.28

4.3.29

4.3.30

4.3.31

Number value

primitive value corresponding to a double-precision 64-bit binary format IEEE 754-2008 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and negative infinity
Number object

member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a number value as
an argument. The resulting object has an internal slot whose value is the number value. A Number object can

be coerced to a number value by calling the Number constructor as a function (20.1.1.1).
Infinity
number value that is the positive infinite number value
NaN
number value that is an IEEE 754-2008 “Not-a-Number” value
Symbol value
primitive value that represents a unique, non-String Object property key
Symbol type
set of all possible Symbol values
Symbol object
member of the Object type that is an instance of the standard built-in Symbol constructor
function

member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves when
invoked. A function's code may or may not be written in ECMAScript.

built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide

implementation-dependent built-in functions that are not described in this specification.
property
part of an object that associates a key (either a String value or a Symbol value) and a value

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

method

function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.
4.3.32 built-in method

method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.33 attribute

internal value that defines some characteristic of a property
4.3.34 own property

property that is directly contained by its object
4.3.35 inherited property

property of an object that is not an own property but is a property (either own or inherited) of the object's prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:
Clause 5 defines the notational conventions used throughout the specification.
Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language including its syntactic encoding and the execution
semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard objects that are
available for use by ECMAScript programs as they execute.

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal as
its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its right-hand side. For each grammar,
the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with zero or more
terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given context-free
grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of terminal symbols that can result
from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the nonterminal
is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

5.1.3

5.1.4

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols Unicode code points that
conform to the rules for SourceCharacter defined in 10.1. It defines a set of productions, starting from the goal symbol
InputElementDiv, InputElementTemplateTail, or InputElementRegExp, or InputElementRegExpOrTemplateTail, that describe

how sequences of such code points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for ECMAScript
and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and punctuators of the
ECMAScript language. Moreover, line terminators, although not considered to be tokens, also become part of the stream of
input elements and guide the process of automatic semicolon insertion (11.9). Simple white space and single-line comments
are discarded and do not appear in the stream of input elements for the syntactic grammar. A MultiLineComment (that is, a
comment of the form /*...*/ regardless of whether it spans more than one line) is likewise simply discarded if it contains no
line terminator; but if a MultiLineComment contains one or more line terminators, then it is replaced by a single line
terminator, which becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the code points as
defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern, that describe how
sequences of code points are translated into regular expression patterns.

“,

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating punctuation. The

lexical and RegExp grammars share some productions.
The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the lexical
grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This grammar appears in
7.1.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has ECMAScript tokens
defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting from two alternative
goal symbols Script and Module, that describe how sequences of tokens form syntactically correct independent components

of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Script or Module, it is first converted to a stream of input
elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a single application
of the syntactic grammar. The input stream is syntactically in error if the tokens in the stream of input elements cannot be
parsed as a single instance of the goal nonterminal (Script or Module), with no tokens left over.

“n

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is not a complete account of which token sequences are
accepted as a correct ECMAScript Script or Module. Certain additional token sequences are also accepted, namely, those that
would be described by the grammar if only semicolons were added to the sequence in certain places (such as before line
terminator characters). Furthermore, certain token sequences that are described by the grammar are not considered

acceptable if a line terminator character appears in certain “awkward” places.

In certain cases in order to avoid ambiguities the syntactic grammar uses generalized productions that permit token
sequences that do not form a valid ECMAScript Script or Module. For example, this technique is used for object literals and
object destructuring patterns. In such cases a more restrictive supplemental grammar is provided that further restricts the
acceptable token sequences. In certain contexts, when explicitly specified, the input elements corresponding to such a
production are parsed again using a goal symbol of a supplemental grammar. The input stream is syntactically in error if the
tokens in the stream of input elements parsed by a cover grammar cannot be parsed as a single instance of the
corresponding supplemental goal symbol, with no tokens left over.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars are shown in fixed width font, both in the
productions of the grammars and throughout this specification whenever the text directly refers to such a terminal symbol.
These are to appear in a script exactly as written. All terminal symbol code points specified in this way are to be understood
as the appropriate Unicode code points from the Basic Latin range, as opposed to any similar-looking code points from other

Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is introduced by
the name of the nonterminal being defined followed by one or more colons. (The number of colons indicates to which
grammar the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding

lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token, followed by an
Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression and Statement are

themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
Argumentlist , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a comma,
followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined in terms of itself. The
result is that an ArgumentList may contain any positive number of arguments, separated by commas, where each argument

expression is an AssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix “op¢", which may appear after a terminal or nonterminal, indicates an optional symbol. The alternative

containing the optional symbol actually specifies two right-hand sides, one that omits the optional element and one that

includes it. This means that:

VariableDeclaration :
Bindingldentifier Initializeryy

is a convenient abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer

and that:

IterationStatement :
for (LexicalDeclaration Expressionon 3 Expressiong,t) Statement

is a convenient abbreviation for:

IterationStatement :
for (LexicalDeclaration ; Expressionopt+) Statement

for (LexicalDeclaration Expression ; Expressiongnt) Statement

which in turn is an abbreviation for:

IterationStatement :
for (LexicalDeclaration ;) Statement

for (LexicalDeclaration ; Expression) Statement

for (LexicalDeclaration Expression ;) Statement

for (LexicalDeclaration Expression ; Expression) Statement
so, in this example, the nonterminal IterationStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “[parameters] » Which may appear as a suffix to
the nonterminal symbol defined by the production. “harameters” may be either a single name or a comma separated list of

names. A parameterized production is shorthand for a set of productions defining all combinations of the parameter names,

preceded by an underscore, appended to the parameterized nonterminal symbol. This means that:

StatementList[return]
ReturnStatement

ExpressionStatement
is a convenient abbreviation for:

StatementlList :
ReturnStatement

ExpressionStatement

StatementList_Return :
ReturnStatement

ExpressionStatement
and that:

StatementList[Return, In]
ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementlList :
ReturnStatement

ExpressionStatement

StatementList_Return :
ReturnStatement

ExpressionStatement

StatementlList_In :
ReturnStatement

ExpressionStatement

StatementList_Return_In :
ReturnStatement

ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily referenced in a complete

grammar.
References to nonterminals on the right-hand side of a production can also be parameterized. For example:

StatementlList :
ReturnStatement

ExpressionStatement| 1]

is equivalent to saying:

StatementlList :
ReturnStatement
ExpressionStatement_In

A nonterminal reference may have both a parameter list and an “,¢" suffix. For example:

VariableDeclaration :
Bindingldentifier Initializer[1n] opt

is an abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer_In

« n

Prefixing a parameter name with “” on a right-hand side nonterminal reference makes that parameter value dependent upon

the occurrence of the parameter name on the reference to the current production's left-hand side symbol. For example:

VariableDeclaration|1p

Bindingldentifier Initializer[>1n]
is an abbreviation for:

VariableDeclaration :
Bindingldentifier Initializer

VariableDeclaration_In :
Bindingldentifier Initializer_In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named parameter was
used in referencing the production's nonterminal symbol. If a right-hand side alternative is prefixed with “[~parameter]” that
alternative is only available if the named parameter was not used in referencing the production's nonterminal symbol. This
means that:

StatementList[return]

[+Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ExpressionStatement

StatementList_Return :
ReturnStatement

ExpressionStatement
and that

StatementList[Return]
[~Return] ReturnStatement

ExpressionStatement
is an abbreviation for:

StatementlList :
ReturnStatement
ExpressionStatement

StatementList_Return :
ExpressionStatement

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal symbols on the

following line or lines is an alternative definition. For example, the lexical grammar for ECMAScript contains the production:

NonZeroDigit :: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit ::

O 0 N O L1 A W N

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-hand side
contains no terminals or nonterminals.

If the phrase “[lookahead & set]” appears in the right-hand side of a production, it indicates that the production may not be
used if the immediately following input token sequence is a member of the given set. The set can be written as a comma
separated list of one or two element terminal sequences enclosed in curly brackets. For convenience, the set can also be
written as a nonterminal, in which case it represents the set of all terminals to which that nonterminal could expand. If the
set consists of a single terminal the phrase “[lookahead # terminal]” may be used.

For example, given the definitions

DecimalDigit :: one of
0123456789

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead € {1 ,3 ,5 ,7 ,9}] DecimalDigits
DecimalDigit [lookahead & DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit not followed
by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it indicates
that the production is a restricted production: it may not be used if a LineTerminator occurs in the input stream at the

indicated position. For example, the production:

ThrowStatement :

throw [no LineTerminator here| Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token and the

Expression.

5.2

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without affecting the
syntactic acceptability of the script.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multi-code point

token, it represents the sequence of code points that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase “but not” and
then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of code points that could replace IdentifierName
provided that the same sequence of code points could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it would be

impractical to list all the alternatives:

SourceCharacter ::

any Unicode code point

Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to precisely specify
the required semantics of ECMAScript language constructs. The algorithms are not intended to imply the use of any specific
implementation technique. In practice, there may be more efficient algorithms available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must be provided as part
of the algorithm's definition. In order to facilitate their use in multiple parts of this specification, some algorithms, called
abstract operations, are named and written in parameterized functional form so that they may be referenced by name from
within other algorithms. Abstract operations are typically referenced using a functional application style such as
operationName(arg1, arg2). Some abstract operations are treated as polymorphically dispatched methods of class-like
specification abstractions. Such method-like abstract operations are typically referenced using a method application style
such as someValue.operationName(arg1, arg2).

Calls to abstract operations return Completion Records. Abstract operations referenced using the functional application style
and the method application style that are prefixed by ? indicate that ReturnlfAbrupt should be applied to the resulting
Completion Record. For example, ? operationName() is equivalent to ReturnIfAbrupt(operationName()). Similarly, ?
someValue.operationName() is equivalent to ReturnlfAbrupt(someValue.operationName()).

The prefix ! is used to indicate that an abstract operation will never return an abrupt completion and that the resulting
Completion Record's value field should be used in place of the return value of the operation. For example, “Let val be !

operationName()” is equivalent to the following algorithm steps:

1. Let val be operationName().
2. Assert: val is never an abrupt completion.
3. If val is a Completion Record, let val be val.[[Value]].

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has multiple
alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is associated with a
grammar production, it may reference the terminal and nonterminal symbols of the production alternative as if they were
parameters of the algorithm. When used in this manner, nonterminal symbols refer to the actual alternative definition that is

matched when parsing the source text.

When an algorithm is associated with a production alternative, the alternative is typically shown without any “[|” grammar
annotations. Such annotations should only affect the syntactic recognition of the alternative and have no effect on the
associated semantics for the alternative.

Unless explicitly specified otherwise, all chain productions have an implicit definition for every algorithm that might be
applied to that production's left-hand side nonterminal. The implicit definition simply reapplies the same algorithm name
with the same parameters, if any, to the chain production's sole right-hand side nonterminal and then returns the result. For
example, assume there is a production:

Block :
{ StatementList }

but there is no corresponding Evaluation algorithm that is explicitly specified for that production. If in some algorithm there
is a statement of the form: “Return the result of evaluating Block” it is implicit that an Evaluation algorithm exists of the form:

Runtime Semantics: Evaluation
Block : { StatementList }
1. Return the result of evaluating StatementList.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented and may
themselves be further divided into indented substeps. Outline numbering conventions are used to identify substeps with the
first level of substeps labelled with lower case alphabetic characters and the second level of substeps labelled with lower
case roman numerals. If more than three levels are required these rules repeat with the fourth level using numeric labels. For

example:

1. Top-level step
a. Substep.
b. Substep.
i. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
i. Subsubsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps are only applied if
the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is the negation of the preceding “if”
predicate step at the same level.

A step may specify the iterative application of its substeps.

A step that begins with “Assert:” asserts an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic requirements and hence
need not be checked by an implementation. They are used simply to clarify algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical functions
defined later in this clause should always be understood as computing exact mathematical results on mathematical real
numbers, which unless otherwise noted do not include infinities and do not include a negative zero that is distinguished from
positive zero. Algorithms in this standard that model floating-point arithmetic include explicit steps, where necessary, to
handle infinities and signed zero and to perform rounding. If a mathematical operation or function is applied to a floating-
point number, it should be understood as being applied to the exact mathematical value represented by that floating-point
number; such a floating-point number must be finite, and if it is +0 or -0 then the corresponding mathematical value is
simply 0.

The mathematical function abs(x) produces the absolute value of x, which is -x if x is negative (less than zero) and otherwise
is x itself.

The mathematical function min(x1, x2, ..., xN) produces the mathematically smallest of x1 through xN. The mathematical
function max(x1, x2, .., xN) produces the mathematically largest of x1 through xN. The domain and range of these
mathematical functions include +00 and -c0.

5.3

6.1

6.1.1

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero) such that
abs(k) < abs(y) and x-k = g x y for some integer q.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not larger than x.

NOTE floor(x) = x-(x modulo 1).

Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of input elements
form a valid ECMAScript Script or Module that may be evaluated. In some situations additional rules are needed that may be
expressed using either ECMAScript algorithm conventions or prose requirements. Such rules are always associated with a
production of a grammar and are called the static semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic Rules are associated
with grammar productions and a production that has multiple alternative definitions will typically have for each alternative a
distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition for a static
semantic rule named Contains which takes an argument named symbol whose value is a terminal or nonterminal of the
grammar that includes the associated production. The default definition of Contains is:

1. For each terminal and nonterminal grammar symbol, sym, in the definition of this production do
a. If sym is the same grammar symbol as symbol, return true.
b. If sym is a nonterminal, then
i. Let contained be the result of sym Contains symbol.
ii. If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see clause 16) that
are associated with specific grammar productions. Evaluation of most early error rules are not explicitly invoked within the
algorithms of this specification. A conforming implementation must, prior to the first evaluation of a Script or Module,
validate all of the early error rules of the productions used to parse that Script or Module. If any of the early error rules are
violated the Script or Module is invalid and cannot be evaluated.

ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible value types are

exactly those defined in this clause. Types are further subclassified into ECMAScript language types and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to the
ECMAScript language and specification types defined in this clause. When the term “empty” is used as if it was naming a

value, it is equivalent to saying “no value of any type”.

ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript programmer using the
ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean, String, Symbol, Number, and Object. An
ECMAScript language value is a value that is characterized by an ECMAScript language type.

The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value has the value
undefined.

6.1.2

6.1.3

6.1.4

6.1.5

6.1.5.1

The Null Type

The Null type has exactly one value, called null.

The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
The String Type

The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values (“elements”) up to a
maximum length of 2°3-1 elements. The String type is generally used to represent textual data in a running ECMAScript
program, in which case each element in the String is treated as a UTF-16 code unit value. Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first element (if any) is
atindex 0, the next element (if any) at index 1, and so on. The length of a String is the number of elements (i.e., 16-bit values)
within it. The empty String has length zero and therefore contains no elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code unit. However,
ECMAScript does not place any restrictions or requirements on the sequence of code units in a String value, so they may be
ill-formed when interpreted as UTF-16 code unit sequences. Operations that do not interpret String contents treat them as
sequences of undifferentiated 16-bit unsigned integers. The function String.prototype.normalize (see 21.1.3.12) can be
used to explicitly normalize a String value. String.prototype.localeCompare (see 21.1.3.10) internally normalizes
String values, but no other operations implicitly normalize the strings upon which they operate. Only operations that are
explicitly specified to be language or locale sensitive produce language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source text is in Normalized Form C, string literals are guaranteed to also be

normalized, as long as they do not contain any Unicode escape sequences.
Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the interpretation is:

e A code unit in the range 0 to OxD7FF or in the range 0xE000 to OxFFFF is interpreted as a code point with the same
value.

e A sequence of two code units, where the first code unit c1 is in the range 0xD800 to OxDBFF and the second code unit c2
is in the range 0xDCO0 to 0xDFFF is a surrogate pair and is interpreted as a code point with the value (c1 - 0xD800) x
0x400 + (c2 - 0xDC00) + 0x10000. (See 10.1.2)

e A code unit that is in the range 0xD800 to 0xDFFF, but is not part of a surrogate pair, is interpreted as a code point with
the same value.

The Symbol Type

The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).

Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a String value.
Well-Known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification. They are
typically used as the keys of properties whose values serve as extension points of a specification algorithm. Unless otherwise

specified, well-known symbols values are shared by all realms (8.2).

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where “name” is one
of the values listed in Table 1.

Table 1: Well-known Symbols

Specification Name

[[Description]]

Value and Purpose

@@haslInstance

"Symbol.hasInstance"

A method that determines if a constructor object recognizes
an object as one of the constructor's instances. Called by the
semantics of the instanceof operator.

@@isConcatSpreadable

"Symbol.isConcatSpreadable”

A Boolean valued property that if true indicates that an
object should be flattened to its array elements by
Array.prototype.concat.

@@iterator

"Symbol.iterator"

A method that returns the default Iterator for an object.

Called by the semantics of the for-of statement.

@@match

"Symbol.match"

A regular expression method that matches the regular
expression against a string. Called by the
String.prototype.match method.

@@replace

"Symbol.replace"

A regular expression method that replaces matched
substrings of a string. Called by the
String.prototype.replace method.

@@search

"Symbol.search"

A regular expression method that returns the index within a
string that matches the regular expression. Called by the
String.prototype.search method.

@@species

"Symbol.species"”

A function valued property that is the constructor function
that is used to create derived objects.

@@split

"Symbol.split"

A regular expression method that splits a string at the
indices that match the regular expression. Called by the
String.prototype.split method.

@@toPrimitive

"Symbol.toPrimitive’

A method that converts an object to a corresponding
primitive value. Called by the ToPrimitive abstract

operation.

@@toStringTag

"Symbol.toStringTag

A String valued property that is used in the creation of the
default string description of an object. Accessed by the
built-in method Object.prototype.toString.

@@unscopables

"Symbol.unscopables’

An object valued property whose own and inherited
property names are property names that are excluded from

the with environment bindings of the associated object.

6.1.6 The Number Type

The Number type has exactly 18437736874454810627 (that is, 264-253+3) values, representing the double-precision 64-bit
format IEEE 754-2008 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic, except that the
9007199254740990 (that is, 253-2) distinct “Not-a-Number” values of the IEEE Standard are represented in ECMAScript as a
single special NaN value. (Note that the NaN value is produced by the program expression NaN.) In some implementations,

external code might be able to detect a difference between various Not-a-Number values, but such behaviour is

implementation-dependent; to ECMAScript code, all NaN values are indistinguishable from each other.

NOTE The bit pattern that might be observed in an ArrayBuffer (see 24.1) after a Number value has been stored into

it is not necessarily the same as the internal representation of that Number value used by the ECMAScript

implementation.

6.1.7

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are also referred
to for expository purposes by the symbols +00 and -00, respectively. (Note that these two infinite Number values are
produced by the program expressions +Infinity (or simply Infinity) and -Infinity.)

The other 18437736874454810624 (that is, 264-253) values are called the finite numbers. Half of these are positive numbers
and half are negative numbers; for every finite positive Number value there is a corresponding negative value having the
same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for expository
purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number values are produced by the
program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 26-2°3-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 264-25%) of them are normalized, having the form

sxmx2¢

252

where s is +1 or -1, m is a positive integer less than 253 but not less than 252, and e is an integer ranging from -1074 to 971,

inclusive.

The remaining 9007199254740990 (that is, 253-2) values are denormalized, having the form
sxmx2°

where s is +1 or -1, m is a positive integer less than 252 and eis -1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in the Number type
(indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two forms shown
above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real mathematical quantity
(which might even be an irrational number such as) means a Number value chosen in the following manner. Consider the
set of all finite values of the Number type, with -0 removed and with two additional values added to it that are not
representable in the Number type, namely 21024 (which is +1 x 253 x 2971) and -21024 (which is -1 x 253 x 2971). Choose the

member of this set that is closest in value to x. If two values of the set are equally close, then the one with an even significand
is chosen; for this purpose, the two extra values 21024 and -21924 gre considered to have even significands. Finally, if 21024

was chosen, replace it with +o0; if -2102% a5 chosen, replace it with -0; if +0 was chosen, replace it with -0 if and only if x is
less than zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure corresponds

exactly to the behaviour of the IEEE 754-2008 “round to nearest, ties to even” mode.)

Some ECMAScript operators deal only with integers in specific ranges such as 2231 through 2311, inclusive, or in the range 0

through 216.1, inclusive. These operators accept any value of the Number type but first convert each such value to an integer
value in the expected range. See the descriptions of the numeric conversion operations in 7.1.

The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor property:

e Adata property associates a key value with an ECMAScript language value and a set of Boolean attributes.
e An accessor property associates a key value with one or two accessor functions, and a set of Boolean attributes. The
accessor functions are used to store or retrieve an ECMAScript language value that is associated with the property.

Properties are identified using key values. A property key value is either an ECMAScript String value or a Symbol value. All
String and Symbol values, including the empty string, are valid as property keys. A property name is a property key thatis a
String value.

An integer index is a String-valued property key that is a canonical numeric String (see 7.1.16) and whose numeric value is

either +0 or a positive integer < 2%3-1.An array index is an integer index whose numeric value i is in the range +0 < i < 2321,

Property keys are used to access properties and their values. There are two kinds of access for properties: get and set,
corresponding to value retrieval and assignment, respectively. The properties accessible via get and set access includes both
own properties that are a direct part of an object and inherited properties which are provided by another associated object via
a property inheritance relationship. Inherited properties may be either own or inherited properties of the associated object.
Each own property of an object must each have a key value that is distinct from the key values of the other own properties of
that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their semantics for
accessing and manipulating their properties. Ordinary objects are the most common form of objects and have the default
object semantics. An exotic object is any form of object whose property semantics differ in any way from the default

semantics.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property associates a key
value with the attributes listed in Table 2.

Table 2: Attributes of a Data Property

Attribute Value Description
Name Domain
[[Value]] Any The value retrieved by a get access of the property.
ECMAScript
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the property's [[Value]] attribute using

[[Set]] will not succeed.

[[Enumerable]] | Boolean If true, the property will be enumerated by a for-in enumeration (see 13.7.5).
Otherwise, the property is said to be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the property to be an accessor property,
or change its attributes (other than [[Value]], or changing [[Writable]] to false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

Table 3: Attributes of an Accessor Property

Attribute Value Description
Name Domain
[[Get]] Object | If the value is an Object it must be a function object. The function's [[Call]] internal method
Undefined | (Table 6) is called with an empty arguments list to retrieve the property value each time a
get access of the property is performed.
[[Set]] Object | If the value is an Object it must be a function object. The function's [[Call]] internal method
Undefined | (Table 6) is called with an arguments list containing the assigned value as its sole argument
each time a set access of the property is performed. The effect of a property's [[Set]] internal
method may, but is not required to, have an effect on the value returned by subsequent calls
to the property's [[Get]] internal method.
[[Enumerable]] | Boolean If true, the property is to be enumerated by a for-in enumeration (see 13.7.5). Otherwise,
the property is said to be non-enumerable.
[[Configurable]] | Boolean If false, attempts to delete the property, change the property to be a data property, or
change its attributes will fail.

If the initial values of a property's attributes are not explicitly specified by this specification, the default value defined in

Table 4 is used.

Table 4: Default Attribute Values

Attribute Name | Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] | false
[[Configurable]] | false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods. Each object in an

ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour. These internal methods

are not part of the ECMAScript language. They are defined by this specification purely for expository purposes. However,

each object within an implementation of ECMAScript must behave as specified by the internal methods associated with it.

The exact manner in which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different algorithms when a

common internal method name is invoked upon them. That actual object upon which an internal method is invoked is the

“target” of the invocation. If, at runtime, the implementation of an algorithm attempts to use an internal method of an object

that the object does not support, a TypeError exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript specification

algorithms. Internal slots are not object properties and they are not inherited. Depending upon the specific internal slot

specification, such state may consist of values of any ECMAScript language type or of specific ECMAScript specification type

values. Unless explicitly specified otherwise, internal slots are allocated as part of the process of creating an object and may

not be dynamically added to an object. Unless specified otherwise, the initial value of an internal slot is the value undefined.

Various algorithms within this specification create objects that have internal slots. However, the ECMAScript language
provides no direct way to associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double square brackets [[

11-

Table 5 summarizes the essential internal methods used by this specification that are applicable to all objects created or
manipulated by ECMAScript code. Every object must have algorithms for all of the essential internal methods. However, all
objects do not necessarily use the same algorithms for those methods.

The “Signature” column of Table 5 and other similar tables describes the invocation pattern for each internal method. The
invocation pattern always includes a parenthesized list of descriptive parameter names. If a parameter name is the same as
an ECMAScript type name then the name describes the required type of the parameter value. If an internal method explicitly
returns a value, its parameter list is followed by the symbol “=” and the type name of the returned value. The type names
used in signatures refer to the types defined in clause 6 augmented by the following additional names. “any” means the value
may be any ECMAScript language type. An internal method implicitly returns a Completion Record. In addition to its
parameters, an internal method always has access to the object that is the target of the method invocation.

Table 5: Essential Internal Methods

Internal Method

Signature

Description

[[GetPrototypeOf]] () = Object | Null Determine the object that provides inherited properties for this object. A
null value indicates that there are no inherited properties.
[[SetPrototypeOf]] (Object | Null) = Associate this object with another object that provides inherited properties.
Boolean Passing null indicates that there are no inherited properties. Returns true
indicating that the operation was completed successfully or false indicating
that the operation was not successful.
[[IsExtensible]] () = Boolean Determine whether it is permitted to add additional properties to this

object.

[[PreventExtensions]]

() = Boolean

Control whether new properties may be added to this object. Returns true
if the operation was successful or false if the operation was unsuccessful.

Boolean

[[GetOwnProperty]] (propertyKey) = Return a Property Descriptor for the own property of this object whose key
Undefined | is propertyKey, or undefined if no such property exists.
Property
Descriptor
[[HasProperty]] (propertyKey) - Return a Boolean value indicating whether this object already has either an
Boolean own or inherited property whose key is propertyKey.
[[Get]] (propertyKey, Return the value of the property whose key is propertyKey from this object.
Receiver) = any If any ECMAScript code must be executed to retrieve the property value,
Receiver is used as the this value when evaluating the code.
[[Set]] (propertyKey, value, | Set the value of the property whose key is propertyKey to value. If any
Receiver) = ECMAScript code must be executed to set the property value, Receiver is
Boolean used as the this value when evaluating the code. Returns true if the
property value was set or false if it could not be set.
[[Delete]] (propertyKey) - Remove the own property whose key is propertyKey from this object.

Return false if the property was not deleted and is still present. Return

true if the property was deleted or is not present.

[[DefineOwnProperty]] | (propertyKey, Create or alter the own property, whose key is propertyKey, to have the
PropertyDescriptor) | state described by PropertyDescriptor. Return true if that property was
- Boolean successfully created/updated or false if the property could not be created
or updated.
[[OwnPropertyKeys]] ()—List of Return a List whose elements are all of the own property keys for the
propertyKey object.

Table 6 summarizes additional essential internal methods that are supported by objects that may be called as functions. A

function object is an object that supports the [[Call]] internal methods. A constructor (also referred to as a constructor

function) is a function object that supports the [[Construct]] internal method.

6.1.7.3

Table 6: Additional Essential Internal Methods of Function Objects

Internal Signature Description
Method
[[Call]] (any, a Executes code associated with this object. Invoked via a function call expression. The
List of arguments to the internal method are a this value and a list containing the arguments passed to
any) = the function by a call expression. Objects that implement this internal method are callable.
any

[[Construct]] | (a Listof [Creates an object. Invoked via the new or super operators. The first argument to the internal
any, method is a list containing the arguments of the operator. The second argument is the object to
Object) —» | which the new operator was initially applied. Objects that implement this internal method are
Object called constructors. A function object is not necessarily a constructor and such non-constructor
function objects do not have a [[Construct]] internal method.

The semantics of the essential internal methods for ordinary objects and standard exotic objects are specified in clause 9. If
any specified use of an internal method of an exotic object is not supported by an implementation, that usage must throw a
TypeError exception when attempted.

Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified below. Ordinary
ECMAScript Objects as well as all standard exotic objects in this specification maintain these invariants. ECMAScript Proxy
objects maintain these invariants by means of runtime checks on the result of traps invoked on the [[ProxyHandler]] object.

Any implementation provided exotic objects must also maintain these invariants for those objects. Violation of these
invariants may cause ECMAScript code to have unpredictable behaviour and create security issues. However, violation of
these invariants must never compromise the memory safety of an implementation.

An implementation must not allow these invariants to be circumvented in any manner such as by providing alternative
interfaces that implement the functionality of the essential internal methods without enforcing their invariants.

Definitions:

o The target of an internal method is the object upon which the internal method is called.

e A target is non-extensible if it has been observed to return false from its [[IsExtensible]] internal method, or true from
its [[PreventExtensions]] internal method.

e A non-existent property is a property that does not exist as an own property on a non-extensible target.

o All references to SameValue are according to the definition of the SameValue algorithm.

[[GetPrototypeOf]] ()

e The Type of the return value must be either Object or Null.
o [ftargetis non-extensible, and [[GetPrototypeOf]] returns a value v, then any future calls to [[GetPrototypeOf]] should
return the SameValue as v.

NOTE 1 An object's prototype chain should have finite length (that is, starting from any object, recursively applying the
[[GetPrototypeOf]] internal method to its result should eventually lead to the value null). However, this
requirement is not enforceable as an object level invariant if the prototype chain includes any exotic objects
that do not use the ordinary object definition of [[GetPrototypeOf]]. Such a circular prototype chain may result
in infinite loops when accessing object properties.

[[SetPrototypeOf]] (V)

e The Type of the return value must be Boolean.
e [ftarget is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as the target's observed
[[GetPrototypeOf]] value.

[[IsExtensible]] ()

e The Type of the return value must be Boolean.
o [f [[IsExtensible]] returns false, all future calls to [[IsExtensible]] on the target must return false.

[[PreventExtensions]] ()

e The Type of the return value must be Boolean.
o If [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return false and the target is

now considered non-extensible.
[[GetOwnProperty]] (P)

e The Type of the return value must be either Property Descriptor or Undefined.

o [fthe Type of the return value is Property Descriptor, the return value must be a complete property descriptor (see
6.2.4.6).

e Ifaproperty P is described as a data property with Desc.[[Value]] equal to v and Desc.[[Writable]] and Desc.
[[Configurable]] are both false, then the SameValue must be returned for the Desc.[[Value]] attribute of the property on
all future calls to [[GetOwnProperty]] (P).

e [f P's attributes other than [[Writable]] may change over time or if the property might disappear, then P's
[[Configurable]] attribute must be true.

o If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

o [fthe target is non-extensible and P is non-existent, then all future calls to [[GetOwnProperty]] (P) on the target must

describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined).

NOTE 2 As a consequence of the third invariant, if a property is described as a data property and it may return different
values over time, then either or both of the Desc.[[Writable]] and Desc.[[Configurable]] attributes must be true

even if no mechanism to change the value is exposed via the other internal methods.
[[DefineOwnProperty]] (P, Desc)
e The Type of the return value must be Boolean.

e [[DefineOwnProperty]|] must return false if P has previously been observed as a non-configurable own property of the

target, unless either:

1. P is a non-configurable writable own data property. A non-configurable writable data property can be changed
into a non-configurable non-writable data property.
2. All attributes in Desc are the SameValue as P's attributes.
e [[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-existent own property. That

is, a non-extensible target object cannot be extended with new properties.
[[HasProperty]] (P)

o The Type of the return value must be Boolean.
e If P was previously observed as a non-configurable data or accessor own property of the target, [[HasProperty]] must

return true.
[[Get]] (P, Receiver)

o If P was previously observed as a non-configurable, non-writable own data property of the target with value v, then
[[Get]] must return the SameValue.

o [f P was previously observed as a non-configurable own accessor property of the target whose [[Get]] attribute is
undefined, the [[Get]] operation must return undefined.

[[Set]] (P, V, Receiver)

e The Type of the return value must be Boolean.

e [f P was previously observed as a non-configurable, non-writable own data property of the target, then [[Set]] must
return false unless V is the SameValue as P's [[Value]] attribute.

o [f P was previously observed as a non-configurable own accessor property of the target whose [[Set]] attribute is
undefined, the [[Set]] operation must return false.

[[Delete]] (P)

e The Type of the return value must be Boolean.
o [f P was previously observed to be a non-configurable own data or accessor property of the target, [[Delete]] must
return false.

[[OwnPropertyKeys]] ()

e The return value must be a List.

e The Type of each element of the returned List is either String or Symbol.

e The returned List must contain at least the keys of all non-configurable own properties that have previously been
observed.

o If the object is non-extensible, the returned List must contain only the keys of all own properties of the object that are
observable using [[GetOwnProperty]].

[[Construct]] ()
e The Type of the return value must be Object.
6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification and which
usually have realm-specific identities. Unless otherwise specified each intrinsic object actually corresponds to a set of similar
objects, one per realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current realm,
corresponding to the name. Determination of the current realm and its intrinsics is described in 8.3. The well-known
intrinsics are listed in Table 7.

Table 7: Well-known Intrinsic Objects

Intrinsic Name Global Name ECMAScript Language Association
%Array% Array The Array constructor (22.1.1)
%ArrayBuffer% ArrayBuffer The ArrayBuffer constructor (24.1.2)

%ArrayBufferPrototype%

ArrayBuffer.prototype

The initial value of the prototype data property
of %ArrayBuffer%.

%ArraylteratorPrototype%

The prototype of Array iterator objects (22.1.5)

%ArrayPrototype%

Array.prototype

The initial value of the prototype data property
of %Array% (22.1.3)

%ArrayProto_values%

Array.prototype.values

The initial value of the values data property of
%ArrayPrototype% (22.1.3.30)

%Boolean% Boolean The Boolean constructor (19.3.1)

%BooleanPrototype% Boolean.prototype The initial value of the prototype data property
of %Boolean% (19.3.3)

%DataView% DataView The DataView constructor (24.2.2)

%DataViewPrototype% DataView.prototype The initial value of the prototype data property
of %DataView%

%Date% Date The Date constructor (20.3.2)

%DatePrototype% Date.prototype The initial value of the prototype data property
of %Date%.

%decodeURI% decodeURI The decodeURI function (18.2.6.2)

%decodeURIComponent% decodeURIComponent The decodeURIComponent function (18.2.6.3)

%encodeURI% encodeURI The encodeURI function (18.2.6.4)

%encodeURIComponent% encodeURIComponent The encodeURIComponent function (18.2.6.5)

%Error% Error The Error constructor (19.5.1)

%ErrorPrototype% Error.prototype The initial value of the prototype data property
of %Error%

%eval% eval The eval function (18.2.1)

%EvalError% EvalError The EvalError constructor (19.5.5.1)

%EvalErrorPrototype% EvalError.prototype The initial value of the prototype property of
%EvalError%

%Float32Array% Float32Array The Float32Array constructor (22.2)

%Float32ArrayPrototype%

Float32Array.prototype

The initial value of the prototype data property
of %Float32Array%.

%Float64Array%

Float64Array

The Float64Array constructor (22.2)

%Float64ArrayPrototype%

Float64Array.prototype

The initial value of the prototype data property
of %Float64Array%

%Function%

Function

The Function constructor (19.2.1)

%FunctionPrototype% Function.prototype The initial value of the prototype data property
of %Function%

%Generator% The initial value of the prototype property of
%GeneratorFunction%

%GeneratorFunction% The constructor of generator objects (25.2.1)

%GeneratorPrototype% The initial value of the prototype property of
%Generator%

%Int8Array% Int8Array The Int8Array constructor (22.2)

%Int8ArrayPrototype% Int8Array.prototype The initial value of the prototype data property
of %Int8Array%

%Int16Array% Intl6Array The Int16Array constructor (22.2)

%Int16ArrayPrototype% Intl6Array.prototype The initial value of the prototype data property
of %Int16Array%

%Int32Array% Int32Array The Int32Array constructor (22.2)

%Int32ArrayPrototype% Int32Array.prototype The initial value of the prototype data property
of %Int32Array%

%isFinite% isFinite The isFinite function (18.2.2)

%isNaN% isNaN The isNaN function (18.2.3)

%]IteratorPrototype% An object that all standard built-in iterator
objects indirectly inherit from

%JSON% JSON The JSON object (24.3)

%Map% Map The Map constructor (23.1.1)

%MaplteratorPrototype% The prototype of Map iterator objects (23.1.5)

%MapPrototype% Map.prototype The initial value of the prototype data property
of %Map%

%Math% Math The Math object (20.2)

%Number% Number The Number constructor (20.1.1)

%NumberPrototype% Number.prototype The initial value of the prototype property of
%Number%

%O0Dbject% Object The Object constructor (19.1.1)

%0ObjectPrototype% Object.prototype The initial value of the prototype data property

of %0bject%. (19.1.3)

%0ObjProto_toString%

Object.prototype.toString

The initial value of the toString data property
of %0bjectPrototype% (19.1.3.6)

%0O0DbjProto_valueOf%

Object.prototype.valueOf

The initial value of the valueOf data property of
%ODbjectPrototype% (19.1.3.7)

%parseFloat% parseFloat The parseFloat function (18.2.4)
%parselnt% parselnt The parselInt function (18.2.5)
%Promise% Promise The Promise constructor (25.4.3)

%PromisePrototype% Promise.prototype The initial value of the prototype data property
of %Promise%

%Proxy% Proxy The Proxy constructor (26.2.1)

%RangeError% RangeError The RangeError constructor (19.5.5.2)

%RangeErrorPrototype%

RangeError.prototype

The initial value of the prototype property of

%RangeError%

%~ReferenceError%

ReferenceError

The ReferenceError constructor (19.5.5.3)

%ReferenceErrorPrototype%

ReferenceError.prototype

The initial value of the prototype property of

%ReferenceError%
%Reflect% Reflect The Reflect object (26.1)
%RegExp% RegExp The RegExp constructor (21.2.3)
%RegExpPrototype% RegExp.prototype The initial value of the prototype data property
of %RegExp%
%Set% Set The Set constructor (23.2.1)
%SetlteratorPrototype% The prototype of Set iterator objects (23.2.5)
%SetPrototype% Set.prototype The initial value of the prototype data property
of %Set%
%String% String The String constructor (21.1.1)
%StringlteratorPrototype% The prototype of String iterator objects (21.1.5)
%StringPrototype% String.prototype The initial value of the prototype data property
of %String%
%Symbol% Symbol The Symbol constructor (19.4.1)
%SymbolPrototype% Symbol.prototype The initial value of the prototype data property
of %Symbol%. (19.4.3)
%SyntaxError% SyntaxError The SyntaxError constructor (19.5.5.4)

%SyntaxErrorPrototype%

SyntaxError.prototype

The initial value of the prototype property of

%SyntaxError%
%ThrowTypeError% A function object that unconditionally throws a
new instance of %TypeError%
%TypedArray% The super class of all typed Array constructors

(22.2.1)

%TypedArrayPrototype%

The initial value of the prototype property of
%TypedArray%

%TypeError% TypeError The TypeError constructor (19.5.5.5)

%TypeErrorPrototype% TypeError.prototype The initial value of the prototype property of
%TypeError%

%Uint8Array% Uint8Array The Uint8Array constructor (22.2)

%Uint8ArrayPrototype% Uint8Array.prototype The initial value of the prototype data property

6.2

6.2.1

of %Uint8Array%

%Uint8ClampedArray% Uint8ClampedArray The Uint8ClampedArray constructor (22.2)

%Uint8ClampedArrayPrototype% | Uint8ClampedArray.prototype | The initial value of the prototype data property
of %Uint8ClampedArray%

%Uint16Array% Uintl6Array The Uint16Array constructor (22.2)

%Uint16ArrayPrototype% Uintl6Array.prototype The initial value of the prototype data property
of %Uint16Array%

%Uint32Array% Uint32Array The Uint32Array constructor (22.2)

%Uint32ArrayPrototype% Uint32Array.prototype The initial value of the prototype data property
of %Uint32Array%

%URIError% URIError The URIError constructor (19.5.5.6)

%URIErrorPrototype% URIError.prototype The initial value of the prototype property of
%URIError%

%WeakMap% WeakMap The WeakMap constructor (23.3.1)

%WeakMapPrototype% WeakMap.prototype The initial value of the prototype data property
of %WeakMap%

%WeakSet% WeakSet The WeakSet constructor (23.4.1)

%WeakSetPrototype% WeakSet.prototype The initial value of the prototype data property
of %WeakSet%

ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of ECMAScript
language constructs and ECMAScript language types. The specification types are Reference, List, Completion, Property
Descriptor, Lexical Environment, Environment Record, and Data Block. Specification type values are specification artefacts
that do not necessarily correspond to any specific entity within an ECMAScript implementation. Specification type values
may be used to describe intermediate results of ECMAScript expression evaluation but such values cannot be stored as
properties of objects or values of ECMAScript language variables.

The List and Record Specification Types

The List type is used to explain the evaluation of argument lists (see 12.3.6) in new expressions, in function calls, and in other
algorithms where a simple ordered list of values is needed. Values of the List type are simply ordered sequences of list
elements containing the individual values. These sequences may be of any length. The elements of a list may be randomly
accessed using 0-origin indices. For notational convenience an array-like syntax can be used to access List elements. For

example, arguments[2] is shorthand for saying the 3™ element of the List arguments.

For notational convenience within this specification, a literal syntax can be used to express a new List value. For example, « 1,
2 » defines a List value that has two elements each of which is initialized to a specific value. A new empty List can be

expressed as « ».

The Record type is used to describe data aggregations within the algorithms of this specification. A Record type value
consists of one or more named fields. The value of each field is either an ECMAScript value or an abstract value represented

by a name associated with the Record type. Field names are always enclosed in double brackets, for example [[Value]].

6.2.2

6.2.2.1

6.2.2.2

For notational convenience within this specification, an object literal-like syntax can be used to express a Record value. For
example, {[[Field1]]: 42, [[Field2]]: false, [[Field3]]: empty} defines a Record value that has three fields, each of which is
initialized to a specific value. Field name order is not significant. Any fields that are not explicitly listed are considered to be

absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For example, if R is

”

the record shown in the previous paragraph then R.[[Field2]] is shorthand for “the field of R named [[Field2]]

Schema for commonly used Record field combinations may be named, and that name may be used as a prefix to a literal
Record value to identify the specific kind of aggregations that is being described. For example: PropertyDescriptor{[[Value]]:
42, [[Writable]]: false, [[Configurable]]: true}.

The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as the behaviour of
statements (break, continue, return and throw) that perform nonlocal transfers of control.

Values of the Completion type are Record values whose fields are defined as by Table 8. Such values are referred to as

Completion Records.

Table 8: Completion Record Fields

Field Value Meaning

[[Type]]l |One of normal, break, continue, return, or throw | The type of completion that occurred.

[[Value]] |any ECMAScriptlanguage value or empty The value that was produced.

[[Target]] | any ECMAScript string or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[Type]] value other than normal.

NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:
1. Return NormalCompletion(argument).

[s a shorthand that is defined as follows:

1. Return Completion{[[Type]]: normal, [[Value]]: argument, [[Target]]: empty}.

Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[Type]] is normal. Unless it is

otherwise obvious from the context, an algorithm statement that returns a value that is not a Completion Record, such as:
1. Return "Infinity".

means the same thing as:
1. Return NormalCompletion("Infinity").

However, if the value expression of a “return” statement is a Completion Record construction literal, the resulting Completion
Record is returned. If the value expression is a call to an abstract operation, the “return” statement simply returns the

Completion Record produced by the abstract operation.

The abstract operation Completion(completionRecord) is used to emphasize that a previously computed Completion Record
is being returned. The Completion abstract operation takes a single argument, completionRecord, and performs the following

steps:

6.2.2.3

6.2.2.4

6.2.2.5

6.2.3

1. Assert: completionRecord is a Completion Record.
2. Return completionRecord as the Completion Record of this abstract operation.

A “return” statement without a value in an algorithm step means the same thing as:
1. Return NormalCompletion(undefined).

Any reference to a Completion Record value that is in a context that does not explicitly require a complete Completion Record
value is equivalent to an explicit reference to the [[Value]] field of the Completion Record value unless the Completion Record

is an abrupt completion.
Throw an Exception
Algorithms steps that say to throw an exception, such as
1. Throw a TypeError exception.
mean the same things as:
1. Return Completion{[[Type]]: throw, [[Value]]: a newly created TypeError object, [[Target]]: empty}.
ReturnlfAbrupt
Algorithms steps that say or are otherwise equivalent to:
1. ReturnlfAbrupt(argument).
mean the same thing as:

1. If argument is an abrupt completion, return argument.

2. Else if argument is a Completion Record, let argument be argument.[[Value]].
Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).
mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. If hygienicTemp is an abrupt completion, return hygienicTemp.
3. Else if hygienicTemp is a Completion Record, let hygienicTemp be hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.
UpdateEmpty (completionRecord, value)
The abstract operation UpdateEmpty with arguments completionRecord and value performs the following steps:

1. Assert: If completionRecord.[[Typel]] is either return or throw, then completionRecord.[[Value]] is not empty.
2. If completionRecord.[[Value]] is not empty, return Completion(completionRecord).
3. Return Completion{[[Type]]: completionRecord.[[Typel]], [[Value]]: value, [[Target]]: completionRecord.[[Target]] }.

The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof, the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an

assignment is expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base value, the referenced
name and the Boolean valued strict reference flag. The base value is either undefined, an Object, a Boolean, a String, a

Symbol, a Number, or an Environment Record. A base value of undefined indicates that the Reference could not be resolved

to a binding. The referenced name is a String or Symbol value.

A Super Reference is a Reference that is used to represents a name binding that was expressed using the super keyword. A

Super Reference has an additional thisValue component and its base value will never be an Environment Record.
The following abstract operations are used in this specification to access the components of references:

e GetBase(V). Returns the base value component of the reference V.

e GetReferencedName(V). Returns the referenced name component of the reference V.

o [sStrictReference(V). Returns the strict reference flag component of the reference V.

e HasPrimitiveBase(V). Returns true if Type(base) is Boolean, String, Symbol, or Number.

e [sPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true; otherwise
returns false.

e IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

o [sSuperReference(V). Returns true if this reference has a thisValue component.
The following abstract operations are used in this specification to operate on references:

6.2.3.1 GetValue (V)

1. ReturnIfAbrupt(V).
2. If Type(V) is not Reference, return V.
3. Let base be GetBase(V).
4. If IsUnresolvableReference(V) is true, throw a ReferenceError exception.
5. If IsPropertyReference(V) is true, then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Let base be ToObject(base).
b. Return ? base.[[Get]](GetReferencedName(V), GetThisValue(V)).
6. Else base must be an Environment Record,
a. Return ? base.GetBindingValue(GetReferencedName(V), IsStrictReference(V)) (see 8.1.1).

NOTE The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the
ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the

object.
6.2.3.2 PutValue (V, W)

1. ReturnIfAbrupt(V).
2. ReturnlfAbrupt(W).
3. If Type(V) is not Reference, throw a ReferenceError exception.
4. Let base be GetBase(V).
5. If IsUnresolvableReference(V) is true, then
a. If [sStrictReference(V) is true, then
i. Throw a ReferenceError exception.
b. Let globalObj be GetGlobalObject().
c. Return ? Set(globalObj, GetReferencedName(V), W, false).
6. Else if IsPropertyReference(V) is true, then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Set base to ToObject(base).
b. Let succeeded be ? base.[[Set]](GetReferencedName(V), W, GetThisValue(V)).
c. If succeeded is false and IsStrictReference(V) is true, throw a TypeError exception.
d. Return.
7. Else base must be an Environment Record,
a. Return ? base.SetMutableBinding(GetReferencedName(V), W, IsStrictReference(V)) (see 8.1.1).

NOTE The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary
object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

6.2.3.3 GetThisValue (V)

1. Assert: IsPropertyReference(V) is true.
2. If IsSuperReference(V) is true, then

a. Return the value of the thisValue component of the reference V.
3. Return GetBase(V).

6.2.3.4 InitializeReferencedBinding (V, W)

1. ReturnlfAbrupt(V).

2. ReturnlfAbrupt(W).

3. Assert: Type(V) is Reference.

4. Assert: IsUnresolvableReference(V) is false.

5. Let base be GetBase(V).

6. Assert: base is an Environment Record.

7. Return base.InitializeBinding(GetReferencedName(V), W).

6.2.4 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes. Values of the
Property Descriptor type are Records. Each field's name is an attribute name and its value is a corresponding attribute value
as specified in 6.1.7.1. In addition, any field may be present or absent. The schema name used within this specification to tag
literal descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property Descriptors based
upon the existence or use of certain fields. A data Property Descriptor is one that includes any fields named either [[Value]]
or [[Writable]]. An accessor Property Descriptor is one that includes any fields named either [[Get]] or [[Set]]. Any Property
Descriptor may have fields named [[Enumerable]] and [[Configurable]]. A Property Descriptor value may not be both a data
Property Descriptor and an accessor Property Descriptor; however, it may be neither. A generic Property Descriptor is a
Property Descriptor value that is neither a data Property Descriptor nor an accessor Property Descriptor. A fully populated
Property Descriptor is one that is either an accessor Property Descriptor or a data Property Descriptor and that has all of the
fields that correspond to the property attributes defined in either Table 2 or Table 3.

The following abstract operations are used in this specification to operate upon Property Descriptor values:
6.2.4.1 IsAccessorDescriptor (Desc)
When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Get]] and Desc.[[Set]] are absent, return false.
3. Return true.

6.2.4.2 IsDataDescriptor (Desc)
When the abstract operation IsDataDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, return false.
3. Return true.

6.2.4.3 IsGenericDescriptor (Desc)
When the abstract operation IsGenericDescriptor is called with Property Descriptor Desc, the following steps are taken:

1. If Desc is undefined, return false.

2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, return true.
3. Return false.

6.2.4.4 FromPropertyDescriptor (Desc)
When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desc, the following steps are taken:

. If Desc is undefined, return undefined.
. Let obj be ObjectCreate(%ObjectPrototype%).
. Assert: obj is an extensible ordinary object with no own properties.
. If Desc has a [[Value]] field, then
a. Perform CreateDataProperty(obj, "value", Desc.[[Value]]).

5. If Desc has a [[Writable]] field, then

a. Perform CreateDataProperty(obj, "writable", Desc.[[Writable]]).
6. If Desc has a [[Get]] field, then

a. Perform CreateDataProperty(obj, "get", Desc.[[Get]]).
7. 1f Desc has a [[Set]] field, then

a. Perform CreateDataProperty(obj, "set", Desc.[[Set]]).
8. If Desc has an [[Enumerable]] field, then

a. Perform CreateDataProperty(obj, "enumerable", Desc.[[Enumerable]]).
9. If Desc has a [[Configurable]] field, then
a. Perform CreateDataProperty(obj, "configurable", Desc.[[Configurable]]).

BwWw N e

10. Assert: all of the above CreateDataProperty operations return true.
11. Return obj.

6.2.4.5 ToPropertyDescriptor (Obj)
When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

. If Type(Obj) is not Object, throw a TypeError exception.
. Let desc be a new Property Descriptor that initially has no fields.
. Let hasEnumerable be ? HasProperty(Obj, "enumerable").

Bw N e

. If hasEnumerable is true, then
a. Let enum be ToBoolean(? Get(Obj, "enumerable")).
b. Set the [[Enumerable]] field of desc to enum.
5. Let hasConfigurable be ? HasProperty(Obj, "configurable").
6. If hasConfigurable is true, then
a. Let confbe ToBoolean(? Get(0bj, "configurable")).
b. Set the [[Configurable]] field of desc to conf.
7. Let hasValue be ? HasProperty(Obj, "value™").
8. If hasValue is true, then
a. Let value be ? Get(Obj, "value™").
b. Set the [[Value]] field of desc to value.
9. Let hasWritable be ? HasProperty(Obj, "writable™).
10. If hasWritable is true, then
a. Let writable be ToBoolean(? Get(0Obj, "writable™")).
b. Set the [[Writable]] field of desc to writable.
11. Let hasGet be ? HasProperty(Obj, "get").
12. If hasGet is true, then
a. Let getter be ? Get(Obj, "get").
b. If IsCallable(getter) is false and getter is not undefined, throw a TypeError exception.
c. Set the [[Get]] field of desc to getter.
13. Let hasSet be ? HasProperty(0Obj, "set").
14. If hasSet is true, then
a. Let setter be ? Get(Obj, "set").

b. If [sCallable(setter) is false and setter is not undefined, throw a TypeError exception.
c. Set the [[Set]] field of desc to setter.
15. If either desc.[[Get]] or desc.[[Set]] is present, then
a. If either desc.[[Value]] or desc.[[Writable]] is present, throw a TypeError exception.
16. Return desc.

6.2.4.6 CompletePropertyDescriptor (Desc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desc, the following steps are
taken:

1. Assert: Desc is a Property Descriptor.
2. Let like be Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]: undefined, [[Set]]: undefined, [[Enumerable]]:
false, [[Configurable]]: false}.
3. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, set Desc.[[Value]] to like.[[Value]].
b. If Desc does not have a [[Writable]] field, set Desc.[[Writable]] to like.[[Writable]].
4. Else,
a. If Desc does not have a [[Get]] field, set Desc.[[Get]] to like.[[Get]].
b. If Desc does not have a [[Set]] field, set Desc.[[Set]] to like.[[Set]].
5. If Desc does not have an [[Enumerable]] field, set Desc.[[Enumerable]] to like.[[Enumerable]].
6. If Desc does not have a [[Configurable]] field, set Desc.[[Configurable]] to like.[[Configurable]].
7. Return Desc.

6.2.5 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution in nested
functions and blocks. These types and the operations upon them are defined in 8.1.

6.2.6 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit) numeric values. A
Data Block value is created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to access the individual bytes of a Data
Block value. This notation presents a Data Block value as a 0-origined integer indexed sequence of bytes. For example, if db is

a 5 byte Data Block value then db[2] can be used to access its 3rd byte.
The following abstract operations are used in this specification to operate upon Data Block values:
6.2.6.1 CreateByteDataBlock (size)
When the abstract operation CreateByteDataBlock is called with integer argument size, the following steps are taken:

1. Assert: size=0.

2. Let db be a new Data Block value consisting of size bytes. If it is impossible to create such a Data Block, throw a
RangeError exception.

3. Set all of the bytes of db to 0.

4. Return db.

6.2.6.2 CopyDataBlockBytes (toBlock, tolndex, fromBlock, fromIndex, count)
When the abstract operation CopyDataBlockBytes is called, the following steps are taken:

1. Assert: fromBlock and toBlock are distinct Data Block values.
2. Assert: fromlIndex, tolndex, and count are integer values = 0.
3. Let fromSize be the number of bytes in fromBlock.

4. Assert: fromIndex+count < fromSize.

5. Let toSize be the number of bytes in toBlock.

6. Assert: tolndex+count < toSize.

7. Repeat, while count>0
a. Set toBlock[toIndex] to the value of fromBlock|[fromIndex].
b. Increment tolndex and fromIndex each by 1.
c. Decrement count by 1.

8. Return NormalCompletion(empty).

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the specification of the
semantics of the ECMAScript language. Other, more specialized abstract operations are defined throughout this specification.

7.1 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics of certain
constructs it is useful to define a set of conversion abstract operations. The conversion abstract operations are polymorphic;
they can accept a value of any ECMAScript language type. But no other specification types are used with these operations.

7.1.1 ToPrimitive (input [, PreferredType])

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The abstract operation
ToPrimitive converts its input argument to a non-Object type. If an object is capable of converting to more than one primitive

type, it may use the optional hint PreferredType to favour that type. Conversion occurs according to Table 9:

Table 9: ToPrimitive Conversions

Input Type Result

Undefined | Return input.

Null Return input.

Boolean Return input.

Number Return input.

String Return input.

Symbol Return input.

Object Perform the steps following this table.

When Type(input) is Object, the following steps are taken:

1. If PreferredType was not passed, let hint be "default".
2. Else if PreferredType is hint String, let hint be "string".
3. Else PreferredType is hint Number, let hint be "number".
4. Let exoticToPrim be ? GetMethod(input, @ @toPrimitive).
5. If exoticToPrim is not undefined, then

a. Let result be ? Call(exoticToPrim, input, « hint »).

b. If Type(result) is not Object, return result.

c. Throw a TypeError exception.
6. If hint is "default", let hint be "number".
7. Return ? OrdinaryToPrimitive(input, hint).

When the abstract operation OrdinaryToPrimitive is called with arguments O and hint, the following steps are taken:

1. Assert: Type(0) is Object.
2. Assert: Type(hint) is String and its value is either "string" or "number".
3. If hintis "string", then
a. Let methodNames be « "toString", "valueOf" ».
4. Else,
a. Let methodNames be « "valueOf", "toString" ».
5. For each name in methodNames in List order, do
a. Let method be ? Get(0O, name).
b. If IsCallable(method) is true, then
i. Let result be ? Call(method, 0).
ii. If Type(result) is not Object, return result.
6. Throw a TypeError exception.

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However, objects
may over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in this specification
only Date objects (see 20.3.4.45) and Symbol objects (see 19.4.3.4) over-ride the default ToPrimitive behaviour.
Date objects treat no hint as if the hint were String.

7.1.2 ToBoolean (argument)

The abstract operation ToBoolean converts argument to a value of type Boolean according to Table 10:

Table 10: ToBoolean Conversions

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return argument.

Number Return false if argument is +0, -0, or NaN; otherwise return true.

String Return false if argument is the empty String (its length is zero); otherwise return true.
Symbol Return true.

Object Return true.

7.1.3 ToNumber (argument)

The abstract operation ToNumber converts argument to a value of type Number according to Table 11:

Table 11: ToONumber Conversions

Argument Type Result

Undefined Return NaN.

Null Return +0.

Boolean Return 1 if argument is true. Return +0 if argument is false.

Number Return argument (no conversion).

String See grammar and conversion algorithm below.

Symbol Throw a TypeError exception.

Object Apply the following steps:
1. Let primValue be ? ToPrimitive(argument, hint Number).
2. Return ? ToNumber(primValue).

7.1.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String interpreted as a sequence of UTF-16 encoded
code points (6.1.4). If the grammar cannot interpret the String as an expansion of StringNumericLiteral, then the result of
ToNumber is NaN.

NOTE 1 The terminal symbols of this grammar are all composed of Unicode BMP code points so the result will be NaN
if the string contains the UTF-16 encoding of any supplementary code points or any unpaired surrogate code

points.
Syntax

StringNumericLiteral :::
StrWhiteSpaceqp+

StrWhiteSpacey, StrNumericLiteral StrWhiteSpaceqpt

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpaceqp

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral ::
StrDecimalLiteral
BinarylntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

StrDecimallLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral

- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigits,p+ ExponentPartqp+

. DecimalDigits ExponentPartqp+
DecimalDigits ExponentPartqp+

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for numeric literals
(11.8.3)

NOTE 2 Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral:

o A StringNumericLiteral may include leading and/or trailing white space and/or line terminators.
o A StringNumericLiteral that is decimal may have any number of leading @ digits.

o A StringNumericLiteral that is decimal may include a + or - to indicate its sign.

o A StringNumericLiteral that is empty or contains only white space is converted to +0.

e Infinity and -Infinity are recognized as a StringNumericLiteral but not as a NumericLiteral.

7.1.3.1.1 Runtime Semantics: MV's

The conversion of a String to a Number value is similar overall to the determination of the Number value for a numeric literal
(see 11.8.3), but some of the details are different, so the process for converting a String numeric literal to a value of Number
type is given here. This value is determined in two steps: first, a mathematical value (MV) is derived from the String numeric
literal; second, this mathematical value is rounded as described below. The MV on any grammar symbol, not provided below,
is the MV for that symbol defined in 11.8.3.1.

e The MV of StringNumericLiteral ::: [empty] isO.

e The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

e The MV of StringNumericLiteral ::: StrWhiteSpace StrNumericLiteral StrWhiteSpace is the MV of StrNumericLiteral, no
matter whether white space is present or not.

e The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

e The MV of StrNumericLiteral ::: BinarylntegerLiteral isthe MV of BinaryIntegerLiteral.

e The MV of StrNumericLiteral ::: OctallntegerLiteral is the MV of OctallntegerLiteral.

o The MV of StrNumericLiteral ::: HexIntegerLiteral isthe MV of HexIntegerLiteral.

e The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

e The MV of StrDecimalLiteral ::: + StrUnsignedDecimalliteral is the MV of StrUnsignedDecimallLiteral.

e The MV of StrDecimalLiteral ::: - StrUnsignedDecimallLiteral is the negative of the MV of StrUnsignedDecimalLiteral.
(Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this MV is also 0. The rounding rule described
below handles the conversion of this signless mathematical zero to a floating-point +0 or -0 as appropriate.)

e The MV of StrUnsignedDecimalLiteral ::: Infinity is 1010000 (3 value so large that it will round to +e0).

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . isthe MV of DecimalDigits.

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits plus (the
MV of the second DecimalDigits times 10™), where n is the number of code points in the second DecimalDigits.

o The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . ExponentPart isthe MV of DecimalDigits times 10¢, where e
is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™")) times 10¢, where n is the number of code points in
the second DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits is the MV of DecimalDigits times 10", where n is the number
of code points in DecimalDigits.

e The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits ExponentPart isthe MV of DecimalDigits times 10", where
n is the number of code points in DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits is the MV of DecimalDigits.

o The MV of StrUnsignedDecimalLiteral ::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10, where e is
the MV of ExponentPart.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the Number type. If the

MV is 0, then the rounded value is +0 unless the first non white space code point in the String numeric literal is , in which

case the rounded value is -0. Otherwise, the rounded value must be the Number value for the MV (in the sense defined in

7.1.4

7.1.5

6.1.6), unless the literal includes a StrUnsignedDecimalLiteral and the literal has more than 20 significant digits, in which case
the Number value may be either the Number value for the MV of a literal produced by replacing each significant digit after
the 20th with a 0 digit or the Number value for the MV of a literal produced by replacing each significant digit after the 20th
with a 0 digit and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an

ExponentPart and

e jtisnot@; or
e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

Tolnteger (argument)

The abstract operation Tolnteger converts argument to an integral numeric value. This abstract operation functions as

follows:

1. Let number be ? ToNumber(argument).

2. If number is NaN, return +0.

3. If number is +0, -0, +00, or -00, return number.

4. Return the number value that is the same sign as number and whose magnitude is floor(abs(number)).

ToInt32 (argument)

The abstract operation ToInt32 converts argument to one of 232 integer values in the range 231 through 2311, inclusive.

This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).

2. If number is NaN, +0, -0, +00, or -0, return +0.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).
4. Let int32bit be int modulo 232,

5. If int32bit > 231, return int32bit - 232; otherwise return int32bit.

NOTE Given the above definition of ToInt32:

e The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

e Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that
+00 and -00 are mapped to +0.)

e Tolnt32 maps -0 to +0.

7.1.6 ToUint32 (argument)

The abstract operation ToUint32 converts argument to one of 232 integer values in the range 0 through 232-1, inclusive. This

abstract operation functions as follows:

1. Let number be ? ToNumber(argument).

2. If number is NaN, +0, -0, +00, or -0, return +0.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).
4. Let int32bit be int modulo 232,

5. Return int32bit.

NOTE Given the above definition of ToUint32:

e Step 5 is the only difference between ToUint32 and ToInt32.

e The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second
application leaves that value unchanged.

e ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that
+00 and -00 are mapped to +0.)

e ToUint32 maps -0 to +0.

7.1.7 Tolnt16 (argument)

The abstract operation Tolnt16 converts argument to one of 21© integer values in the range -32768 through 32767, inclusive.

This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).

2. If number is NaN, +0, -0, +00, or -00, return +0.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).
4. Let int16bit be int modulo 21°.

5. If int16bit = 215, return int16bit - 21°; otherwise return int16bit.

7.1.8 ToUint16 (argument)

The abstract operation ToUint16 converts argument to one of 216 integer values in the range 0 through 216.1, inclusive. This

abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0, -0, +00, or -00, return +0.
3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).

4. Let int16bit be int modulo 216.
5. Return int16bit.

NOTE Given the above definition of ToUint16:

o The substitution of 216 for 232 in step 4 is the only difference between ToUint32 and ToUint16.
e ToUint16 maps -0 to +0.

7.1.9 Tolnt8 (argument)

The abstract operation ToInt8 converts argument to one of 28 integer values in the range -128 through 127, inclusive. This

abstract operation functions as follows:

1. Let number be ? ToNumber(argument).

2. If number is NaN, +0, -0, +00, or -00, return +0.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).
4. Let int8bit be int modulo 28,

5. If int8bit = 27, return int8bit - 28; otherwise return int8bit.

7.1.10 ToUint8 (argument)

The abstract operation ToUint8 converts argument to one of 28 integer values in the range 0 through 255, inclusive. This

abstract operation functions as follows:

1. Let number be ? ToNumber(argument).

2. If number is NaN, +0, -0, +0, or -00, return +0.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is floor(abs(number)).
4. Let int8bit be int modulo 28,

5. Return int8bit.

7.1.11 ToUint8Clamp (argument)

The abstract operation ToUint8Clamp converts argument to one of 28 integer values in the range 0 through 255, inclusive.

This abstract operation functions as follows:

1. Let number be ? ToNumber(argument).
2. If number is NaN, return +0.

3. If number < 0, return +0.

4.
5.
6.
7.
8.
9.

If number = 255, return 255.
Let fbe floor(number).

If f+ 0.5 < number, return f+ 1.
If number < f+ 0.5, return f.

If fis odd, return f+ 1.
Return f.

NOTE Unlike the other ECMAScript integer conversion abstract operation, ToUint8Clamp rounds rather than

truncates non-integer values and does not convert +0 to 0. ToUint8Clamp does “round half to even” tie-
breaking. This differs from Math. round which does “round half up” tie-breaking.

7.1.12 ToString (argument)

The abstract operation ToString converts argument to a value of type String according to Table 12:

Table 12: ToString Conversions

Argument Type Result
Undefined Return "undefined".

Null Return "null".

Boolean If argument is true, return "true".

If argument is false, return "false".

Number See 7.1.12.1.

String Return argument.

Symbol Throw a TypeError exception.
Object Apply the following steps:

1. Let primValue be ? ToPrimitive(argument, hint String).
2. Return ? ToString(primValue).

7.1.12.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number m to String format as follows:

1
2.
3.
4.
5.

If m is NaN, return the String "NaN".
If mis +0 or -0, return the String "0".

If m is less than zero, return the String concatenation of the String and ToString(-m).

If m is +00, return the String "Infinity".
Otherwise, let n, k, and s be integers such that k> 1, 101 < s < 10K, the Number value for s x 10" is m, and k is as small
as possible. Note that k is the number of digits in the decimal representation of s, that s is not divisible by 10, and that

the least significant digit of s is not necessarily uniquely determined by these criteria.

. If k < n <21, return the String consisting of the code units of the k digits of the decimal representation of s (in order,

with no leading zeroes), followed by n-k occurrences of the code unit 0x0030 (DIGIT ZERO).

. If 0 < n < 21, return the String consisting of the code units of the most significant n digits of the decimal representation

of s, followed by the code unit 0x002E (FULL STOP), followed by the code units of the remaining k-n digits of the

decimal representation of s.

. If -6 < n < 0, return the String consisting of the code unit 0x0030 (DIGIT ZERO), followed by the code unit 0x002E (FULL

STOP), followed by -n occurrences of the code unit 0x0030 (DIGIT ZERO), followed by the code units of the k digits of

the decimal representation of s.

9. Otherwise, if k = 1, return the String consisting of the code unit of the single digit of s, followed by code unit 0x0065
(LATIN SMALL LETTER E), followed by the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS)
according to whether n-1 is positive or negative, followed by the code units of the decimal representation of the integer
abs(n-1) (with no leading zeroes).

10. Return the String consisting of the code units of the most significant digit of the decimal representation of s, followed by
code unit 0x002E (FULL STOP), followed by the code units of the remaining k-1 digits of the decimal representation of s,
followed by code unit 0x0065 (LATIN SMALL LETTER E), followed by code unit 0x002B (PLUS SIGN) or the code unit
0x002D (HYPHEN-MINUS) according to whether n-1 is positive or negative, followed by the code units of the decimal

representation of the integer abs(n-1) (with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative

requirements of this Standard:

e Ifxis any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as
X.

o The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is

recommended that the following alternative version of step 5 be used as a guideline:

5. Otherwise, let n, k, and s be integers such that k> 1, 10kl <5< 10k, the Number value for s x 10" K is m,
and k is as small as possible. If there are multiple possibilities for s, choose the value of s for which s x 10™
kis closest in value to m. If there are two such possible values of s, choose the one that is even. Note that k

is the number of digits in the decimal representation of s and that s is not divisible by 10.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal

conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://ampl.com/REFS/abstracts.html#rounding. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as

http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

7.1.13 ToObject (argument)

The abstract operation ToObject converts argument to a value of type Object according to Table 13:

http://ampl.com/REFS/abstracts.html#rounding
http://netlib.sandia.gov/fp/dtoa.c
http://netlib.sandia.gov/fp/g_fmt.c

Table 13: ToObject Conversions

Argument Result
Type

Undefined | Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]]| internal slot is set to the value of argument. See 19.3 for
a description of Boolean objects.

Number Return a new Number object whose [[NumberData]] internal slot is set to the value of argument. See 20.1 for
a description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to the value of argument. See 21.1 for a
description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to the value of argument. See 19.4 for a
description of Symbol objects.

Object Return argument.

7.1.14 ToPropertyKey (argument)

The abstract operation ToPropertyKey converts argument to a value that can be used as a property key by performing the
following steps:

1. Let key be ? ToPrimitive(argument, hint String).
2. If Type(key) is Symbol, then

a. Return key.
3. Return ! ToString(key).

7.1.15 ToLength (argument)

The abstract operation ToLength converts argument to an integer suitable for use as the length of an array-like object. It
performs the following steps:

1. Let len be ? Tolnteger(argument).
2. If len < +0, return +0.
3. If len is +00, return 2531,

4. Return min(len, 253-1).
7.1.16 CanonicalNumericlndexString (argument)

The abstract operation CanonicalNumericlndexString returns argument converted to a numeric value if it is a String
representation of a Number that would be produced by ToString, or the string "-0". Otherwise, it returns undefined. This

abstract operation functions as follows:

1. Assert: Type(argument) is String.

2. If argument is " -@", return -0.

3. Let n be ToNumber(argument).

4. If SameValue(! ToString(n), argument) is false, return undefined.
5. Return n.

A canonical numeric string is any String value for which the CanonicalNumericIndexString abstract operation does not return
undefined.

7.2

7.2.1

7.2.2

7.2.3

7.2.4

7.2.5

Testing and Comparison Operations

RequireObjectCoercible (argument)

The abstract operation RequireObjectCoercible throws an error if argument is a value that cannot be converted to an Object
using ToObject. It is defined by Table 14:

Table 14: RequireObjectCoercible Results

Argument Type Result

Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument.

Number Return argument.

String Return argument.

Symbol Return argument.

Object Return argument.

IsArray (argument)
The abstract operation IsArray takes one argument argument, and performs the following steps:

1. If Type(argument) is not Object, return false.

2. If argument is an Array exotic object, return true.

3. If argument is a Proxy exotic object, then
a. If the value of the [[ProxyHandler]] internal slot of argument is null, throw a TypeError exception.
b. Let target be the value of the [[ProxyTarget]] internal slot of argument.
c. Return ? [sArray(target).

4. Return false.

IsCallable (argument)

The abstract operation IsCallable determines if argument, which must be an ECMAScript language value, is a callable function
with a [[Call]] internal method.

1. If Type(argument) is not Object, return false.
2. If argument has a [[Call]] internal method, return true.
3. Return false.

IsConstructor (argument)

The abstract operation IsConstructor determines if argument, which must be an ECMAScript language value, is a function

object with a [[Construct]] internal method.

1. If Type(argument) is not Object, return false.
2. If argument has a [[Construct]] internal method, return true.
3. Return false.

IsExtensible (0)

The abstract operation IsExtensible is used to determine whether additional properties can be added to the object thatis 0. A
Boolean value is returned. This abstract operation performs the following steps:

1. Assert: Type(0) is Object.
2. Return ? O.[[IsExtensible]]().

7.2.6 IsInteger (argument)
The abstract operation IsInteger determines if argument is a finite integer numeric value.

1. If Type(argument) is not Number, return false.
2. If argument is NaN, +00, or -00, return false.
3. If floor(abs(argument)) # abs(argument), return false.

4. Return true.

7.2.7 IsPropertyKey (argument)

The abstract operation IsPropertyKey determines if argument, which must be an ECMAScript language value, is a value that

may be used as a property key.

1. If Type(argument) is String, return true.
2. If Type(argument) is Symbol, return true.
3. Return false.

7.2.8 IsRegExp (argument)
The abstract operation [sRegExp with argument argument performs the following steps:

1. If Type(argument) is not Object, return false.

2. Let isRegExp be ? Get(argument, @@match).

3. IfisRegExp is not undefined, return ToBoolean(isRegExp).

4. If argument has a [[RegExpMatcher]] internal slot, return true.
5. Return false.

7.2.9 SameValue (x,y)

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values, produces true

or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number, then
a. Ifxis NaN and y is NaN, return true.
b. If xis +0 and y is -0, return false.
c. Ifxis -0 and y is +0, return false.
d. If x is the same Number value as y, return true.
e. Return false.
3. Return SameValueNonNumber(x, y).

NOTE This algorithm differs from the Strict Equality Comparison Algorithm in its treatment of signed zeroes and
NaNs.

7.2.10 SameValueZero (x,y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript language values, produces

true or false. Such a comparison is performed as follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number, then

a. If xis NaN and y is NaN, return true.

b. If xis +0 and y is -0, return true.

c. Ifxis -0 and y is +0, return true.

d. If x is the same Number value as y, return true.
e. Return false.
3. Return SameValueNonNumber(x, y).

NOTE SameValueZero differs from SameValue only in its treatment of +0 and -0.
7.2.11 SameValueNonNumber (x, y)

The internal comparison abstract operation SameValueNonNumber(x, y), where neither x nor y are Number values, produces
true or false. Such a comparison is performed as follows:

1. Assert: Type(x) is not Number.
2. Assert: Type(x) is the same as Type(y).
3. If Type(x) is Undefined, return true.
4. If Type(x) is Null, return true.
5. If Type(x) is String, then
a. If x and y are exactly the same sequence of code units (same length and same code units at corresponding indices),
return true; otherwise, return false.

[=))

. If Type(x) is Boolean, then

a. If x and y are both true or both false, return true; otherwise, return false.

~N

. If Type(x) is Symbol, then
a. If x and y are both the same Symbol value, return true; otherwise, return false.
8. Return true if x and y are the same Object value. Otherwise, return false.

7.2.12 Abstract Relational Comparison

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at least one
operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a parameter. The flag is used to
control the order in which operations with potentially visible side-effects are performed upon x and y. It is necessary because
ECMAScript specifies left to right evaluation of expressions. The default value of LeftFirst is true and indicates that the x
parameter corresponds to an expression that occurs to the left of the y parameter's corresponding expression. If LeftFirst is

false, the reverse is the case and operations must be performed upon y before x. Such a comparison is performed as follows:

1. If the LeftFirst flag is true, then
a. Let px be ? ToPrimitive(x, hint Number).
b. Let py be ? ToPrimitive(y, hint Number).
2. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Let py be ? ToPrimitive(y, hint Number).
b. Let px be ? ToPrimitive(x, hint Number).
3. If both px and py are Strings, then
a. If py is a prefix of px, return false. (A String value p is a prefix of String value q if q can be the result of
concatenating p and some other String r. Note that any String is a prefix of itself, because r may be the empty
String.)
b. If px is a prefix of py, return true.
c. Let k be the smallest nonnegative integer such that the code unit at index k within px is different from the code unit
at index k within py. (There must be such a k, for neither String is a prefix of the other.)
d. Let m be the integer that is the code unit value at index k within px.
e. Let n be the integer that is the code unit value at index k within py.
f. If m < n, return true. Otherwise, return false.
4. Else,
a. Let nx be ? ToNumber(px). Because px and py are primitive values evaluation order is not important.
b. Let ny be ? ToNumber(py).
c. If nx is NaN, return undefined.
d. If ny is NaN, return undefined.
e. If nx and ny are the same Number value, return false.

f. If nx is +0 and ny is -0, return false.

g If nxis -0 and ny is +0, return false.
h. If nx is +00, return false.

i. If ny is +00, return true.

j- If ny is -0, return false.

k. If nx is -00, return true.

1. If the mathematical value of nx is less than the mathematical value of ny —note that these mathematical values are

both finite and not both zero—return true. Otherwise, return false.

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (12.8.3) in using “and” instead of “or”.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no

attempt to use the more complex, semantically oriented definitions of character or string equality and collating
order defined in the Unicode specification. Therefore String values that are canonically equal according to the
Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in
normalized form. Also, note that for strings containing supplementary characters, lexicographic ordering on

sequences of UTF-16 code unit values differs from that on sequences of code point values.

7.2.13 Abstract Equality Comparison

The

Juny

O N O U s WN

10.

comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as follows:

. If Type(x) is the same as Type(y), then
a. Return the result of performing Strict Equality Comparison x === y.
. If xis null and y is undefined, return true.
. If xis undefined and y is null, return true.
. If Type(x) is Number and Type(y) is String, return the result of the comparison x == ToNumber(y).
. If Type(x) is String and Type(y) is Number, return the result of the comparison ToNumber(x) == y.
. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.
. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
. If Type(x) is either String, Number, or Symbol and Type(y) is Object, return the result of the comparison x ==
ToPrimitive(y).
. If Type(x) is Object and Type(y) is either String, Number, or Symbol, return the result of the comparison ToPrimitive(x)
==y.
Return false.

7.2.14 Strict Equality Comparison

The

1
2

3

comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed as follows:

. If Type(x) is different from Type(y), return false.
. If Type(x) is Number, then
a. If x is NaN, return false.
b. If y is NaN, return false.
c. If x is the same Number value as y, return true.
d. If xis +0 and y is -0, return true.
e. Ifxis -0 and y is +0, return true.
f. Return false.

. Return SameValueNonNumber(x, y).

NOTE This algorithm differs from the SameValue Algorithm in its treatment of signed zeroes and NaNs.

7.3 Operations on Objects

7.3.1 Get (O, P)

The

abstract operation Get is used to retrieve the value of a specific property of an object. The operation is called with

arguments O and P where O is the object and P is the property key. This abstract operation performs the following steps:

7.3.2

7.3.3

7.3.4

7.3.5

1. Assert: Type(0) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return ? O.[[Get]](P, 0).

GetV (V, P)

The abstract operation GetV is used to retrieve the value of a specific property of an ECMAScript language value. If the value
is not an object, the property lookup is performed using a wrapper object appropriate for the type of the value. The operation
is called with arguments V and P where V is the value and P is the property key. This abstract operation performs the

following steps:

1. Assert: [sPropertyKey(P) is true.
2. Let O be ? ToObject(V).
3. Return ? 0.[[Get]](P, V).

Set (O, P, V, Throw)

The abstract operation Set is used to set the value of a specific property of an object. The operation is called with arguments
0, P, V, and Throw where O is the object, P is the property key, V is the new value for the property and Throw is a Boolean flag.
This abstract operation performs the following steps:

1. Assert: Type(0) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Assert: Type(Throw) is Boolean.

4. Let success be ? 0.[[Set]](P, V, 0).

5. If success is false and Throw is true, throw a TypeError exception.
6. Return success.

CreateDataProperty (O, P, V)

The abstract operation CreateDataProperty is used to create a new own property of an object. The operation is called with
arguments O, P, and V where O is the object, P is the property key, and Vis the value for the property. This abstract operation
performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor{[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
4. Return ? O.[[DefineOwnProperty]] (P, newDesc).

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for properties
created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it

does exist and is not configurable or if O is not extensible, [[DefineOwnProperty]] will return false.
CreateMethodProperty (O, P, V)

The abstract operation CreateMethodProperty is used to create a new own property of an object. The operation is called with
arguments O, P, and V where O is the object, P is the property key, and V is the value for the property. This abstract operation

performs the following steps:

1. Assert: Type(0) is Object.

2. Assert: IsPropertyKey/(P) is true.

3. Let newDesc be the PropertyDescriptor{[[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}.
4. Return ? O.[[DefineOwnProperty]](P, newDesc).

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for built-in
methods and methods defined using class declaration syntax. Normally, the property will not already exist. If it

does exist and is not configurable or if O is not extensible, [[DefineOwnProperty]] will return false.

7.3.6 CreateDataPropertyOrThrow (O, P, V)

The abstract operation CreateDataPropertyOrThrow is used to create a new own property of an object. It throws a
TypeError exception if the requested property update cannot be performed. The operation is called with arguments O, P,
and VVwhere O is the object, P is the property key, and Vis the value for the property. This abstract operation performs the

following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let success be ? CreateDataProperty(O, P, V).

4. If success is false, throw a TypeError exception.

5. Return success.

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for properties
created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it
does exist and is not configurable or if O is not extensible, [[DefineOwnProperty]] will return false causing this

operation to throw a TypeError exception.

7.3.7 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperty]] internal method of an object in a
manner that will throw a TypeError exception if the requested property update cannot be performed. The operation is
called with arguments O, P, and desc where O is the object, P is the property key, and desc is the Property Descriptor for the

property. This abstract operation performs the following steps:

1. Assert: Type(0) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let success be ? O0.[[DefineOwnProperty]] (P, desc).
4. If success is false, throw a TypeError exception.

5. Return success.
7.3.8 DeletePropertyOrThrow (O, P)

The abstract operation DeletePropertyOrThrow is used to remove a specific own property of an object. It throws an
exception if the property is not configurable. The operation is called with arguments O and P where O is the object and P is

the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let success be ? O.[[Delete]](P).

4. If success is false, throw a TypeError exception.

5. Return success.

7.3.9 GetMethod (V, P)

The abstract operation GetMethod is used to get the value of a specific property of an ECMAScript language value when the
value of the property is expected to be a function. The operation is called with arguments V and P where Vis the ECMAScript

language value, P is the property key. This abstract operation performs the following steps:

1. Assert: [sPropertyKey(P) is true.

2. Let func be ? GetV(V, P).

3. If func is either undefined or null, return undefined.

4. If IsCallable(func) is false, throw a TypeError exception.

5. Return func.

7.3.10 HasProperty (O, P)

7.3.11

7.3.12

7.3.13

7.3.14

The abstract operation HasProperty is used to determine whether an object has a property with the specified property key.
The property may be either an own or inherited. A Boolean value is returned. The operation is called with arguments O and P
where O is the object and P is the property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return ? O.[[HasProperty]](P).

HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with the specified
property key. A Boolean value is returned. The operation is called with arguments O and P where O is the object and P is the

property key. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let desc be ? 0.[[GetOwnProperty]](P).
4., If desc is undefined, return false.

5. Return true.

Call (F, V[, argumentsList])

The abstract operation Call is used to call the [[Call]] internal method of a function object. The operation is called with
arguments F, V, and optionally argumentsList where F is the function object, Vis an ECMAScript language value that is the
this value of the [[Call]], and argumentsList is the value passed to the corresponding argument of the internal method. If
argumentsList is not present, a new empty List is used as its value. This abstract operation performs the following steps:

1. If argumentsList was not passed, let argumentsList be a new empty List.
2. If IsCallable(F) is false, throw a TypeError exception.
3. Return ? F.[[Call]](V, argumentsList).

Construct (F [, argumentsList [, newTarget |])

The abstract operation Construct is used to call the [[Construct]] internal method of a function object. The operation is called
with arguments F, and optionally argumentsList, and newTarget where F is the function object. argumentsList and newTarget
are the values to be passed as the corresponding arguments of the internal method. If argumentsList is not present, a new
empty List is used as its value. If newTarget is not present, F is used as its value. This abstract operation performs the

following steps:

1. If newTarget was not passed, let newTarget be F.

2. If argumentsList was not passed, let argumentsList be a new empty List.
3. Assert: IsConstructor(F) is true.

4. Assert: IsConstructor(newTarget) is true.

5. Return ? F.[[Construct]](argumentsList, newTarget).

NOTE If newTarget is not passed, this operation is equivalent to: new F(...argumentsList)

SetintegrityLevel (O, level)

The abstract operation SetIntegrityLevel is used to fix the set of own properties of an object. This abstract operation

performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: level is either "sealed" or "frozen".
3. Let status be ? O.[[PreventExtensions]]().

4. If status is false, return false.

5. Let keys be ? 0.[[OwnPropertyKeys]] ().

6. If level is "sealed", then

a. Repeat for each element k of keys,
i. Perform ? DefinePropertyOrThrow(O, k, PropertyDescriptor{[[Configurable]]: false}).
7. Else level is "frozen",
a. Repeat for each element k of keys,
i. Let currentDesc be ? O.[[GetOwnProperty]] (k).
ii. If currentDesc is not undefined, then
1. If IsAccessorDescriptor(currentDesc) is true, then
a. Let desc be the PropertyDescriptor{[[Configurable]]: false}.
2. Else,
a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.
3. Perform ? DefinePropertyOrThrow(0, k, desc).
8. Return true.

7.3.15 TestIntegrityLevel (O, level)

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are fixed. This
abstract operation performs the following steps:

1. Assert: Type(0) is Object.
2. Assert: level is either "sealed" or "frozen".
3. Let status be ? IsExtensible(0).
4. If status is true, return false.
5. NOTE If the object is extensible, none of its properties are examined.
6. Let keys be ? 0.[[OwnPropertyKeys]]().
7. Repeat for each element k of keys,
a. Let currentDesc be ? 0.[[GetOwnProperty]] (k).
b. If currentDesc is not undefined, then
i. If currentDesc.[[Configurable]] is true, return false.
ii. If level is "frozen" and IsDataDescriptor(currentDesc) is true, then
1. If currentDesc.[[Writable]] is true, return false.
8. Return true.

7.3.16 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are provided by a List. This
abstract operation performs the following steps:

1. Assert: elements is a List whose elements are all ECMAScript language values.
2. Let array be ArrayCreate(0).
3. Letnbe 0.
4. For each element e of elements
a. Let status be CreateDataProperty(array, ! ToString(n), e).
b. Assert: status is true.
c¢. Increment n by 1.

5. Return array.
7.3.17 CreateListFromArrayLike (obj [, elementTypes])

The abstract operation CreateListFromArrayLike is used to create a List value whose elements are provided by the indexed
properties of an array-like object, obj. The optional argument elementTypes is a List containing the names of ECMAScript
Language Types that are allowed for element values of the List that is created. This abstract operation performs the following
steps:

1. If elementTypes was not passed, let elementTypes be « Undefined, Null, Boolean, String, Symbol, Number, Object ».
2. If Type(obj) is not Object, throw a TypeError exception.
3. Let len be ? ToLength(? Get(obj, "1ength")).

4. Let list be a new empty List.
5. Let index be 0.
6. Repeat while index < len
a. Let indexName be ! ToString(index).
b. Let next be ? Get(obj, indexName).
c. If Type(next) is not an element of elementTypes, throw a TypeError exception.
d. Append next as the last element of list.
e. Set index to index + 1.
7. Return [ist.

7.3.18 Invoke (V, P [, argumentsList])

The abstract operation Invoke is used to call a method property of an ECMAScript language value. The operation is called
with arguments V, P, and optionally argumentsList where V serves as both the lookup point for the property and the this
value of the call, P is the property key, and argumentsList is the list of arguments values passed to the method. If
argumentsList is not present, a new empty List is used as its value. This abstract operation performs the following steps:

1. Assert: [sPropertyKey(P) is true.

2. If argumentsList was not passed, let argumentsList be a new empty List.
3. Let func be ? GetV(V, P).

4. Return ? Call(func, V, argumentsList).

7.3.19 OrdinaryHasInstance (C, 0)

The abstract operation OrdinaryHasInstance implements the default algorithm for determining if an object O inherits from

the instance object inheritance path provided by constructor C. This abstract operation performs the following steps:

1. If IsCallable(C) is false, return false.
2. If C has a [[BoundTargetFunction]] internal slot, then
a. Let BC be the value of C's [[BoundTargetFunction]] internal slot.
b. Return ? InstanceofOperator(0, BC).
3. If Type(O) is not Object, return false.
4. Let Pbe ? Get(C, "prototype").
5. If Type(P) is not Object, throw a TypeError exception.
6. Repeat
a. Let 0 be ? O0.[[GetPrototypeOf]]().
b. If O is null, return false.

c. If SameValue(P, O) is true, return true.
7.3.20 SpeciesConstructor (O, defaultConstructor)

The abstract operation SpeciesConstructor is used to retrieve the constructor that should be used to create new objects that
are derived from the argument object O. The defaultConstructor argument is the constructor to use if a constructor
@@species property cannot be found starting from 0. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Let Cbe ? Get(O, "constructor").

3. If Cis undefined, return defaultConstructor.

4. If Type(C) is not Object, throw a TypeError exception.

5. Let S be ? Get(C, @@species).

6. If S is either undefined or null, return defaultConstructor.
7. If IsConstructor(S) is true, return S.

8

. Throw a TypeError exception.
7.3.21 EnumerableOwnNames (0)

When the abstract operation EnumerableOwnNames is called with Object O, the following steps are taken:

1. Assert: Type(0) is Object.
2. Let ownKeys be ? O0.[[OwnPropertyKeys]]().
3. Let names be a new empty List.
4. Repeat, for each element key of ownKeys in List order
a. If Type(key) is String, then
i. Let desc be ? 0.[[GetOwnProperty]](key).
ii. If desc is not undefined, then
1. If desc.[[Enumerable]] is true, append key to names.
5. Order the elements of names so they are in the same relative order as would be produced by the Iterator that would be
returned if the EnumerateObjectProperties internal method was invoked with O.

6. Return names.

7.3.22 GetFunctionRealm (obj)
The abstract operation GetFunctionRealm with argument obj performs the following steps:

1. Assert: obj is a callable object.
2. If obj has a [[Realm]] internal slot, then
a. Return obj's [[Realm]] internal slot.
3. If obj is a Bound Function exotic object, then
a. Let target be obj's [[BoundTargetFunction]] internal slot.
b. Return ? GetFunctionRealm(target).
4. If obj is a Proxy exotic object, then
a. If the value of the [[ProxyHandler]] internal slot of obj is null, throw a TypeError exception.
b. Let proxyTarget be the value of obj's [[ProxyTarget]] internal slot.
c. Return ? GetFunctionRealm(proxyTarget).

5. Return the current Realm Record.

NOTE Step 5 will only be reached if target is a non-standard exotic function object that does not have a [[Realm]]

internal slot.

7.4 Operations on Iterator Objects
See Common Iteration Interfaces (25.1).

7.4.1 Getlterator (obj [, method])

The abstract operation Getlterator with argument obj and optional argument method performs the following steps:

1. If method was not passed, then
a. Let method be ? GetMethod(obj, @ @iterator).
2. Let iterator be ? Call(method, obj).
3. If Type(iterator) is not Object, throw a TypeError exception.
4. Return iterator.

7.4.2 IteratorNext (iterator [, value])
The abstract operation IteratorNext with argument iterator and optional argument value performs the following steps:

1. If value was not passed, then
a. Let result be ? Invoke(iterator, "next", « »).
2. Else,
a. Let result be ? Invoke(iterator, "next", « value »).
3. If Type(result) is not Object, throw a TypeError exception.
4. Return result.

7.4.3

7.4.4

7.4.5

7.4.6

7.4.7

7.4.8

IteratorComplete (iterResult)
The abstract operation IteratorComplete with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return ToBoolean(? Get(iterResult, "done")).

IteratorValue (iterResult)
The abstract operation IteratorValue with argument iterResult performs the following steps:

1. Assert: Type(iterResult) is Object.
2. Return ? Get(iterResult, "value").

IteratorStep (iterator)

The abstract operation IteratorStep with argument iterator requests the next value from iterator and returns either false
indicating that the iterator has reached its end or the IteratorResult object if a next value is available. IteratorStep performs
the following steps:

1. Let result be ? IteratorNext(iterator).
2. Let done be ? IteratorComplete(result).
3. If done is true, return false.

4. Return result.

IteratorClose (iterator, completion)

The abstract operation IteratorClose with arguments iterator and completion is used to notify an iterator that it should
perform any actions it would normally perform when it has reached its completed state:

. Assert: Type(iterator) is Object.

. Assert: completion is a Completion Record.

. Let return be ? GetMethod(iterator, "return").

. If return is undefined, return Completion(completion).

. Let innerResult be Call(return, iterator, « »).

. If completion.[[Type]] is throw, return Completion(completion).

. If innerResult.[[Type]] is throw, return Completion(innerResult).

. If Type(innerResult.[[Value]]) is not Object, throw a TypeError exception.

O© 00 N O U1 B W N

. Return Completion(completion).
CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments value and done creates an object that supports the
[teratorResult interface by performing the following steps:

1. Assert: Type(done) is Boolean.

2. Let obj be ObjectCreate(%0bjectPrototype%).

3. Perform CreateDataProperty(obj, "value", value).
4. Perform CreateDataProperty(obj, "done", done).
5. Return obyj.

CreatelListlterator (list)

The abstract operation CreateListlterator with argument list creates an Iterator (25.1.1.2) object whose next method returns
the successive elements of list. It performs the following steps:

1. Let iterator be ObjectCreate(%]IteratorPrototype%, « [[IteratorNext]], [[IteratedList]], [[ListlteratorNextIndex]] »).
2. Set iterator's [[IteratedList]] internal slot to list.

3. Set iterator's [[ListlteratorNextIndex]] internal slot to 0.

4. Let next be a new built-in function object as defined in Listlterator next (7.4.8.1).
5. Set iterator's [[IteratorNext]] internal slot to next.

6. Perform CreateMethodProperty(iterator, "next", next).

7. Return iterator.

7.4.8.1 Listlterator next()

8.1

The Listlterator next method is a standard built-in function object (clause 17) that performs the following steps:

. Let O be the this value.

. Let fbe the active function object.

. If 0 does not have a [[IteratorNext]] internal slot, throw a TypeError exception.
. Let next be the value of the [[IteratorNext]] internal slot of O.

. If SameValue(f, next) is false, throw a TypeError exception.

. If O does not have an [[IteratedList]] internal slot, throw a TypeError exception.
. Let list be the value of the [[IteratedList]] internal slot of O.

. Let index be the value of the [[ListlteratorNextIndex]] internal slot of O.

. Let len be the number of elements of list.

O 0 N O U W N

=
(=}

. If index = len, then

a. Return CreatelterResultObject(undefined, true).
11. Set the value of the [[ListlteratorNextIndex]] internal slot of O to index+1.
12. Return CreatelterResultObject(list[index], false).

NOTE A Listlterator next method will throw an exception if applied to any object other than the one with which it

was originally associated.

Executable Code and Execution Contexts

Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables and functions
based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of an Environment Record and a
possibly null reference to an outer Lexical Environment. Usually a Lexical Environment is associated with some specific
syntactic structure of ECMAScript code such as a FunctionDeclaration, a BlockStatement, or a Catch clause of a TryStatement
and a new Lexical Environment is created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated Lexical
Environment. It is referred to as the Lexical Environment's EnvironmentRecord

The outer environment reference is used to model the logical nesting of Lexical Environment values. The outer reference of a
(inner) Lexical Environment is a reference to the Lexical Environment that logically surrounds the inner Lexical
Environment. An outer Lexical Environment may, of course, have its own outer Lexical Environment. A Lexical Environment
may serve as the outer environment for multiple inner Lexical Environments. For example, if a FunctionDeclaration contains
two nested FunctionDeclarations then the Lexical Environments of each of the nested functions will have as their outer

Lexical Environment the Lexical Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global environment's outer
environment reference is null. A global environment's EnvironmentRecord may be prepopulated with identifier bindings and
includes an associated global object whose properties provide some of the global environment's identifier bindings. As
ECMAScript code is executed, additional properties may be added to the global object and the initial properties may be
modified.

A module environment is a Lexical Environment that contains the bindings for the top level declarations of a Module. It also

contains the bindings that are explicitly imported by the Module. The outer environment of a module environment is a global

8.1.1

environment.

A function environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function object. A
function environment may establish a new this binding. A function environment also captures the state necessary to

support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not correspond to any
specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript program to directly access or

manipulate such values.
Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative Environment Records and
object Environment Records. Declarative Environment Records are used to define the effect of ECMAScript language syntactic
elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly associate identifier bindings
with ECMAScript language values. Object Environment Records are used to define the effect of ECMAScript elements such as
WithStatement that associate identifier bindings with the properties of some object. Global Environment Records and
function Environment Records are specializations that are used for specifically for Script global declarations and for top-level

declarations within functions.

For specification purposes Environment Record values are values of the Record specification type and can be thought of as
existing in a simple object-oriented hierarchy where Environment Record is an abstract class with three concrete subclasses,
declarative Environment Record, object Environment Record, and global Environment Record. Function Environment
Records and module Environment Records are subclasses of declarative Environment Record. The abstract class includes the
abstract specification methods defined in Table 15. These abstract methods have distinct concrete algorithms for each of the

concrete subclasses.

Table 15: Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an Environment Record has a binding for the String value N. Return true if it
does and false if it does not

CreateMutableBinding(N,
D)

Create a new but uninitialized mutable binding in an Environment Record. The String value
N is the text of the bound name. If the Boolean argument D is true the binding may be
subsequently deleted.

CreatelmmutableBinding(N,
S)

Create a new but uninitialized immutable binding in an Environment Record. The String
value N is the text of the bound name. If S is true then attempts to access the value of the
binding before it is initialized or set it after it has been initialized will always throw an

exception, regardless of the strict mode setting of operations that reference that binding.

InitializeBinding(N, V)

Set the value of an already existing but uninitialized binding in an Environment Record. The
String value N is the text of the bound name. V is the value for the binding and is a value of
any ECMAScript language type.

SetMutableBinding(N, V, S)

Set the value of an already existing mutable binding in an Environment Record. The String
value N is the text of the bound name. V is the value for the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If S is true and the binding cannot be set
throw a TypeError exception.

GetBindingValue(N, S)

Returns the value of an already existing binding from an Environment Record. The String
value N is the text of the bound name. S is used to identify references originating in strict
mode code or that otherwise require strict mode reference semantics. If S is true and the
binding does not exist throw a ReferenceError exception. If the binding exists but is
uninitialized a ReferenceError is thrown, regardless of the value of S.

DeleteBinding(N) Delete a binding from an Environment Record. The String value N is the text of the bound
name. If a binding for N exists, remove the binding and return true. If the binding exists but
cannot be removed return false. If the binding does not exist return true.

HasThisBinding() Determine if an Environment Record establishes a this binding. Return true if it does and
false if it does not.

HasSuperBinding() Determine if an Environment Record establishes a super method binding. Return true if it
does and false if it does not.

WithBaseObject() If this Environment Record is associated with a with statement, return the with object.

Otherwise, return undefined.

8.1.1.1 Declarative Environment Records

8.1.1.1.1

Each declarative Environment Record is associated with an ECMAScript program scope containing variable, constant, let,

class, module, import, and/or function declarations. A declarative Environment Record binds the set of identifiers defined by

the declarations contained within its scope.

The behaviour of the concrete specification methods for declarative Environment Records is defined by the following

algorithms.

HasBinding (N)

The concrete Environment Record method HasBinding for declarative Environment Records simply determines if the

argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative Environment Record for which the method was invoked.

2. If envRec has a binding for the name that is the value of N, return true.

3. Return false.
8.1.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative Environment Records creates a new
mutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for N. If

Boolean argument D has the value true the new binding is marked as being subject to deletion.

1. Let envRec be the declarative Environment Record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding in envRec for N and record that it is uninitialized. If D is true, record that the newly created
binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty).

8.1.1.1.3 CreateImmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding for declarative Environment Records creates a new
immutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for N. If

the Boolean argument S has the value true the new binding is marked as a strict binding.

1. Let envRec be the declarative Environment Record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create an immutable binding in envRec for N and record that it is uninitialized. If S is true, record that the newly created
binding is a strict binding.

4. Return NormalCompletion(empty).

8.1.1.1.4 InitializeBinding (N, V)

The concrete Environment Record method InitializeBinding for declarative Environment Records is used to set the bound
value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. An

uninitialized binding for N must already exist.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. Assert: envRec must have an uninitialized binding for N.

3. Set the bound value for N in envRec to V.

4. Record that the binding for N in envRec has been initialized.

5. Return NormalCompletion(empty).

8.1.1.1.5 SetMutableBinding (N, V, S)

The concrete Environment Record method SetMutableBinding for declarative Environment Records attempts to change the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. A
binding for N normally already exist, but in rare cases it may not. If the binding is an immutable binding, a TypeError is
thrown if S is true.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. If envRec does not have a binding for N, then
a. If Sis true, throw a ReferenceError exception.
b. Perform envRec.CreateMutableBinding(N, true).
c. Perform envRec.InitializeBinding(N, V).
d. Return NormalCompletion(empty).
3. If the binding for N in envRec is a strict binding, let S be true.
4. If the binding for N in envRec has not yet been initialized, throw a ReferenceError exception.
5. Else if the binding for N in envRec is a mutable binding, change its bound value to V.
6. Else this must be an attempt to change the value of an immutable binding so if S is true, throw a TypeError exception.

7. Return NormalCompletion(empty).

8.1.1.1.6

8.1.1.1.7

8.1.1.1.8

8.1.1.1.9

8.1.1.1.10

8.1.1.2

NOTE An example of ECMAScript code that results in a missing binding at step 2 is:
function f(){eval("var x; x = (delete x, 0);")}
GetBindingValue (N, S)

The concrete Environment Record method GetBindingValue for declarative Environment Records simply returns the value of
its bound identifier whose name is the value of the argument N. If the binding exists but is uninitialized a ReferenceError is

thrown, regardless of the value of S.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.

4. Return the value currently bound to N in envRec.
DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative Environment Records can only delete bindings that

have been explicitly designated as being subject to deletion.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. Assert: envRec has a binding for the name that is the value of N.

3. If the binding for N in envRec cannot be deleted, return false.

4. Remove the binding for N from envRec.

5. Return true.

HasThisBinding ()

Regular declarative Environment Records do not provide a this binding.
1. Return false.

HasSuperBinding ()

Regular declarative Environment Records do not provide a super binding.
1. Return false.

WithBaseObject ()

Declarative Environment Records always return undefined as their WithBaseObject.
1. Return undefined.

Object Environment Records

Each object Environment Record is associated with an object called its binding object. An object Environment Record binds
the set of string identifier names that directly correspond to the property names of its binding object. Property keys that are
not strings in the form of an IdentifierName are not included in the set of bound identifiers. Both own and inherited
properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because properties can be
dynamically added and deleted from objects, the set of identifiers bound by an object Environment Record may potentially
change as a side-effect of any operation that adds or deletes properties. Any bindings that are created as a result of such a
side-effect are considered to be a mutable binding even if the Writable attribute of the corresponding property has the value

false. Inmutable bindings do not exist for object Environment Records.

Object Environment Records created for with statements (13.11) can provide their binding object as an implicit this value
for use in function calls. The capability is controlled by a withEnvironment Boolean value that is associated with each object

Environment Record. By default, the value of withEnvironment is false for any object Environment Record.

The behaviour of the concrete specification methods for object Environment Records is defined by the following algorithms.

8.1.1.2.1

8.1.1.2.2

8.1.1.2.3

8.1.1.2.4

8.1.1.2.5

HasBinding (N)

The concrete Environment Record method HasBinding for object Environment Records determines if its associated binding

object has a property whose name is the value of the argument N:

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Let foundBinding be ? HasProperty(bindings, N).
4. If foundBinding is false, return false.
5. If the withEnvironment flag of envRec is false, return true.
6. Let unscopables be ? Get(bindings, @ @unscopables).
7. If Type(unscopables) is Object, then
a. Let blocked be ToBoolean(? Get(unscopables, N)).
b. If blocked is true, return false.
8. Return true.

CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object Environment Records creates in an Environment
Record's associated binding object a property whose name is the String value and initializes it to the value undefined. If
Boolean argument D has the value true the new property's [[Configurable]] attribute is set to true; otherwise it is set to

false.

1. Let envRec be the object Environment Record for which the method was invoked.

2. Let bindings be the binding object for envRec.

3. If D is true, let configValue be true; otherwise let configValue be false.

4. Return ? DefinePropertyOrThrow(bindings, N, PropertyDescriptor{[[Value]]: undefined, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: configValue}).

NOTE Normally envRec will not have a binding for N but if it does, the semantics of DefinePropertyOrThrow may

result in an existing binding being replaced or shadowed or cause an abrupt completion to be returned.
CreateImmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding is never used within this specification in association

with object Environment Records.
InitializeBinding (N, V)

The concrete Environment Record method InitializeBinding for object Environment Records is used to set the bound value of
the current binding of the identifier whose name is the value of the argument N to the value of argument V. An uninitialized
binding for N must already exist.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Assert: envRec must have an uninitialized binding for N.

3. Record that the binding for N in envRec has been initialized.

4. Return ? envRec.SetMutableBinding(N, V, false).

NOTE In this specification, all uses of CreateMutableBinding for object Environment Records are immediately
followed by a call to InitializeBinding for the same name. Hence, implementations do not need to explicitly
track the initialization state of individual object Environment Record bindings.

SetMutableBinding (N, V, S)

The concrete Environment Record method SetMutableBinding for object Environment Records attempts to set the value of
the Environment Record's associated binding object's property whose name is the value of the argument N to the value of
argument V. A property named N normally already exists but if it does not or is not currently writable, error handling is

determined by the value of the Boolean argument S.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return ? Set(bindings, N, V, S).

8.1.1.2.6 GetBindingValue (N, S)

The concrete Environment Record method GetBindingValue for object Environment Records returns the value of its
associated binding object's property whose name is the String value of the argument identifier N. The property should
already exist but if it does not the result depends upon the value of the S argument:

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Let value be ? HasProperty(bindings, N).
4. If value is false, then
a. If Sis false, return the value undefined; otherwise throw a ReferenceError exception.
5. Return ? Get(bindings, N).

8.1.1.2.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object Environment Records can only delete bindings that

correspond to properties of the environment object whose [[Configurable]] attribute have the value true.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return ? bindings.[[Delete] | (N).

8.1.1.2.8 HasThisBinding ()
Regular object Environment Records do not provide a this binding.
1. Return false.
8.1.1.2.9 HasSuperBinding ()
Regular object Environment Records do not provide a super binding.
1. Return false.
8.1.1.2.10 WithBaseObject ()
Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is true.

1. Let envRec be the object Environment Record for which the method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding object for envRec.

3. Otherwise, return undefined.
8.1.1.3 Function Environment Records

A function Environment Record is a declarative Environment Record that is used to represent the top-level scope of a
function and, if the function is not an ArrowFunction, provides a this binding. If a function is not an ArrowFunction function
and references super, its function Environment Record also contains the state that is used to perform super method

invocations from within the function.

Function Environment Records have the additional state fields listed in Table 16.

Table 16: Additional Fields of Function Environment Records

Field Name Value Meaning
[[ThisValue]] Any This is the this value used for this invocation of the function.
[[ThisBindingStatus]] | "lexical™ | If the value is "1exical", this is an ArrowFunction and does not have a local
"initialized" | | thisvalue.
"uninitialized"

[[FunctionObject]] Object The function object whose invocation caused this Environment Record to be
created.

[[HomeObject]] Object | undefined | If the associated function has super property accesses and is not an
ArrowFunction, [[HomeObject]] is the object that the function is bound to as a
method. The default value for [[HomeObject]] is undefined.

[[NewTarget]] Object | undefined | If this Environment Record was created by the [[Construct]] internal method,
[[NewTarget]] is the value of the [[Construct]] newTarget parameter.
Otherwise, its value is undefined.

Function Environment Records support all of the declarative Environment Record methods listed in Table 15 and share the
same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In addition, function
Environment Records support the methods listed in Table 17:

Table 17: Additional Methods of Function Environment Records

Method Purpose

BindThisValue(V) | Set the [[ThisValue]] and record that it has been initialized.

GetThisBinding() | Return the value of this Environment Record's this binding. Throws a ReferenceError if the this

binding has not been initialized.

GetSuperBase() | Return the object that is the base for super property accesses bound in this Environment Record. The
object is derived from this Environment Record's [[HomeObject]] field. The value undefined indicates

that super property accesses will produce runtime errors.

The behaviour of the additional concrete specification methods for function Environment Records is defined by the following

algorithms:
8.1.1.3.1 BindThisValue (V)

1. Let envRec be the function Environment Record for which the method was invoked.

2. Assert: envRec.[[ThisBindingStatus]] is not "lexical".

3. If envRec.[[ThisBindingStatus]] is "initialized", throw a ReferenceError exception.
4. Set envRec.[[ThisValue]] to V.

5. Set envRec.[[ThisBindingStatus]] to "initialized".

6. Return V.

8.1.1.3.2 HasThisBinding ()

1. Let envRec be the function Environment Record for which the method was invoked.
2. If envRec.[[ThisBindingStatus]] is "1lexical", return false; otherwise, return true.

8.1.1.3.3 HasSuperBinding ()

1. Let envRec be the function Environment Record for which the method was invoked.

2. If envRec.[[ThisBindingStatus]] is "1lexical", return false.

3. If envRec.[[HomeObject]] has the value undefined, return false; otherwise, return true.
8.1.1.3.4 GetThisBinding ()

1. Let envRec be the function Environment Record for which the method was invoked.

2. Assert: envRec.[[ThisBindingStatus]] is not "lexical".

3. If envRec.[[ThisBindingStatus]] is "uninitialized", throw a ReferenceError exception.
4. Return envRec.[[ThisValue]].

8.1.1.3.5 GetSuperBase ()

1. Let envRec be the function Environment Record for which the method was invoked.
2. Let home be the value of envRec.[[HomeObiject]].

3. If home has the value undefined, return undefined.

4. Assert: Type(home) is Object.

5. Return ? home.[[GetPrototypeOf]]().

8.1.1.4 Global Environment Records

A global Environment Record is used to represent the outer most scope that is shared by all of the ECMAScript Script
elements that are processed in a common realm. A global Environment Record provides the bindings for built-in globals
(clause 18), properties of the global object, and for all top-level declarations (13.2.8, 13.2.10) that occur within a Script.

A global Environment Record is logically a single record but it is specified as a composite encapsulating an object
Environment Record and a declarative Environment Record. The object Environment Record has as its base object the global
object of the associated Realm Record. This global object is the value returned by the global Environment Record's
GetThisBinding concrete method. The object Environment Record component of a global Environment Record contains the
bindings for all built-in globals (clause 18) and all bindings introduced by a FunctionDeclaration, GeneratorDeclaration, or
VariableStatement contained in global code. The bindings for all other ECMAScript declarations in global code are contained

in the declarative Environment Record component of the global Environment Record.

Properties may be created directly on a global object. Hence, the object Environment Record component of a global
Environment Record may contain both bindings created explicitly by FunctionDeclaration, GeneratorDeclaration, or
VariableDeclaration declarations and bindings created implicitly as properties of the global object. In order to identify which
bindings were explicitly created using declarations, a global Environment Record maintains a list of the names bound using

its CreateGlobalVarBinding and CreateGlobalFunctionBinding concrete methods.
Global Environment Records have the additional fields listed in Table 18 and the additional methods listed in Table 19.

Table 18: Additional Fields of Global Environment Records

Field Name Value Meaning
[[ObjectRecord]] Object Binding object is the global object. It contains global built-in bindings as well as
Environment | FunctionDeclaration, GeneratorDeclaration, and VariableDeclaration bindings in
Record global code for the associated realm.
[[GlobalThisValue]] Object The value returned by this in global scope. Hosts may provide any ECMAScript

Object value.

[[DeclarativeRecord]] | Declarative | Contains bindings for all declarations in global code for the associated realm code
Environment | except for FunctionDeclaration, GeneratorDeclaration, and VariableDeclaration
Record bindings.

[[VarNames]] List of String | The string names bound by FunctionDeclaration, GeneratorDeclaration, and
VariableDeclaration declarations in global code for the associated realm.

8.1.1.4.1

8.1.1.4.2

Table 19: Additional Methods of Global Environment Records

Method

Purpose

GetThisBinding()

Return the value of this Environment Record's this binding.

HasVarDeclaration (N)

Determines if the argument identifier has a binding in this Environment Record that was

created using a VariableDeclaration, FunctionDeclaration, or GeneratorDeclaration.

HasLexicalDeclaration (N)

Determines if the argument identifier has a binding in this Environment Record that was

created using a lexical declaration such as a LexicalDeclaration or a ClassDeclaration.

HasRestrictedGlobalProperty
N)

Determines if the argument is the name of a global object property that may not be

shadowed by a global lexically binding.

CanDeclareGlobalVar (N)

Determines if a corresponding CreateGlobalVarBinding call would succeed if called for

the same argument N.

CanDeclareGlobalFunction (N)

Determines if a corresponding CreateGlobalFunctionBinding call would succeed if called

for the same argument N.

CreateGlobalVarBinding(N, D)

Used to create and initialize to undefined a global var binding in the [[ObjectRecord]]
component of a global Environment Record. The binding will be a mutable binding. The
corresponding global object property will have attribute values appropriate for a var.
The String value N is the bound name. If D is true the binding may be deleted. Logically
equivalent to CreateMutableBinding followed by a SetMutableBinding but it allows var
declarations to receive special treatment.

CreateGlobalFunctionBinding(N,
V,D)

Create and initialize a global function binding in the [[ObjectRecord]] component of a
global Environment Record. The binding will be a mutable binding. The corresponding
global object property will have attribute values appropriate for a function. The String
value N is the bound name. V is the initialization value. If the Boolean argument D is true
the binding may be deleted. Logically equivalent to CreateMutableBinding followed by a
SetMutableBinding but it allows function declarations to receive special treatment.

The behaviour of the concrete specification methods for global Environment Records is defined by the following algorithms.

HasBinding (N)

The concrete Environment Record method HasBinding for global Environment Records simply determines if the argument

identifier is one of the identifiers bound by the record:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].

3. If DclRec.HasBinding(N) is true, return true.

4. Let ObjRec be envRec.[[ObjectRecord]].

5. Return ? ObjRec.HasBinding(N).

CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for global Environment Records creates a new mutable

binding for the name N that is uninitialized. The binding is created in the associated DeclarativeRecord. A binding for N must

not already exist in the DeclarativeRecord. If Boolean argument D has the value true the new binding is marked as being

subject to deletion.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].

3. If DclRec.HasBinding(N) is true, throw a TypeError exception.

4. Return DclRec.CreateMutableBinding(N, D).

8.1.1.4.3

8.1.1.4.4

8.1.1.4.5

8.1.1.4.6

8.1.1.4.7

CreateImmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding for global Environment Records creates a new
immutable binding for the name N that is uninitialized. A binding must not already exist in this Environment Record for N. If
the Boolean argument S has the value true the new binding is marked as a strict binding.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].

3. If DclRec.HasBinding(N) is true, throw a TypeError exception.

4. Return DclRec.CreatelmmutableBinding(N, S).

InitializeBinding (N, V)

The concrete Environment Record method InitializeBinding for global Environment Records is used to set the bound value of
the current binding of the identifier whose name is the value of the argument N to the value of argument V. An uninitialized

binding for N must already exist.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then
a. Return DclRec.InitializeBinding(N, V).
4. Assert: If the binding exists, it must be in the object Environment Record.
5. Let ObjRec be envRec.[[ObjectRecord]].
6. Return ? ObjRec.InitializeBinding(N, V).

SetMutableBinding (N, V, S)

The concrete Environment Record method SetMutableBinding for global Environment Records attempts to change the bound
value of the current binding of the identifier whose name is the value of the argument N to the value of argument V. If the
binding is an immutable binding, a TypeError is thrown if S is true. A property named N normally already exists but if it

does not or is not currently writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then
a. Return DclRec.SetMutableBinding(N, V, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ? ObjRec.SetMutableBinding(N, V, S).

GetBindingValue (N, S)

The concrete Environment Record method GetBindingValue for global Environment Records returns the value of its bound
identifier whose name is the value of the argument N. If the binding is an uninitialized binding throw a ReferenceError
exception. A property named N normally already exists but if it does not or is not currently writable, error handling is

determined by the value of the Boolean argument S.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then
a. Return DclRec.GetBindingValue(N, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ? ObjRec.GetBindingValue(N, S).

DeleteBinding (N)

The concrete Environment Record method DeleteBinding for global Environment Records can only delete bindings that have

been explicitly designated as being subject to deletion.

1. Let envRec be the global Environment Record for which the method was invoked.

8.1.1.4.8

8.1.1.4.9

8.1.1.4.10

8.1.1.4.11

8.1.1.4.12

8.1.1.4.13

8.1.1.4.14

2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then
a. Return DclRec.DeleteBinding(N).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Let globalObject be the binding object for ObjRec.
6. Let existingProp be ? HasOwnProperty(globalObject, N).
7. If existingProp is true, then
a. Let status be ? ObjRec.DeleteBinding(N).
b. If status is true, then
i. Let varNames be envRec.[[VarNames]].
ii. If N is an element of varNames, remove that element from the varNames.
c. Return status.
8. Return true.

HasThisBinding ()
1. Return true.

HasSuperBinding ()
1. Return false.

WithBaseObject ()

Global Environment Records always return undefined as their WithBaseObject.
1. Return undefined.

GetThisBinding ()

1. Let envRec be the global Environment Record for which the method was invoked.
2. Return envRec.[[GlobalThisValue]].

HasVarDeclaration (N)

The concrete Environment Record method HasVarDeclaration for global Environment Records determines if the argument

identifier has a binding in this record that was created using a VariableStatement or a FunctionDeclaration:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let varDeclaredNames be envRec.[[VarNames]].

3. If varDeclaredNames contains the value of N, return true.

4. Return false.

HasLexicalDeclaration (N)

The concrete Environment Record method HasLexicalDeclaration for global Environment Records determines if the
argument identifier has a binding in this record that was created using a lexical declaration such as a LexicalDeclaration or a

ClassDeclaration:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. Return DclRec.HasBinding(N).

HasRestrictedGlobalProperty (N)

The concrete Environment Record method HasRestrictedGlobalProperty for global Environment Records determines if the
argument identifier is the name of a property of the global object that must not be shadowed by a global lexically binding:

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let ObjRec be envRec.[[ObjectRecord]].

3. Let globalObject be the binding object for ObjRec.

4. Let existingProp be ? globalObject.[[GetOwnProperty]] (V).
5. If existingProp is undefined, return false.

6. If existingProp.[[Configurable]] is true, return false.

7. Return true.

NOTE Properties may exist upon a global object that were directly created rather than being declared using a var or
function declaration. A global lexical binding may not be created that has the same name as a non-configurable
property of the global object. The global property undefined is an example of such a property.

8.1.1.4.15 CanDeclareGlobalVar (N)

The concrete Environment Record method CanDeclareGlobalVar for global Environment Records determines if a
corresponding CreateGlobalVarBinding call would succeed if called for the same argument N. Redundant var declarations
and var declarations for pre-existing global object properties are allowed.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let ObjRec be envRec.[[ObjectRecord]].

3. Let globalObject be the binding object for ObjRec.

4. Let hasProperty be ? HasOwnProperty(globalObject, N).

5. If hasProperty is true, return true.

6. Return ? [sExtensible(globalObject).

8.1.1.4.16 CanDeclareGlobalFunction (N)

The concrete Environment Record method CanDeclareGlobalFunction for global Environment Records determines if a
corresponding CreateGlobalFunctionBinding call would succeed if called for the same argument N.

. Let envRec be the global Environment Record for which the method was invoked.
. Let ObjRec be envRec.[[ObjectRecord]].

. Let globalObject be the binding object for ObjRec.

. Let existingProp be ? globalObject.[[GetOwnProperty]](N).

. If existingProp is undefined, return ? IsExtensible(globalObject).

. If existingProp.[[Configurable]] is true, return true.

N O U W N

. If IsDataDescriptor(existingProp) is true and existingProp has attribute values {[[Writable]]: true, [[Enumerable]]:
true}, return true.
8. Return false.

8.1.1.4.17 CreateGlobalVarBinding (N, D)

The concrete Environment Record method CreateGlobalVarBinding for global Environment Records creates and initializes a
mutable binding in the associated object Environment Record and records the bound name in the associated [[VarNames]]
List. If a binding already exists, it is reused and assumed to be initialized.

. Let envRec be the global Environment Record for which the method was invoked.
. Let ObjRec be envRec.[[ObjectRecord]].
. Let globalObject be the binding object for ObjRec.
. Let hasProperty be ? HasOwnProperty(globalObject, N).
. Let extensible be ? IsExtensible(globalObject).
. If hasProperty is false and extensible is true, then
a. Perform ? ObjRec.CreateMutableBinding(N, D).
b. Perform ? ObjRec.InitializeBinding(N, undefined).
7. Let varDeclaredNames be envRec.[[VarNames]].

N U1l A W DN R

8. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
9. Return NormalCompletion(empty).

8.1.1.4.18

8.1.1.5

8.1.1.5.1

CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateGlobalFunctionBinding for global Environment Records creates and
initializes a mutable binding in the associated object Environment Record and records the bound name in the associated
[[VarNames]] List. If a binding already exists, it is replaced.

. Let envRec be the global Environment Record for which the method was invoked.
. Let ObjRec be envRec.[[ObjectRecord]].
. Let globalObject be the binding object for ObjRec.
. Let existingProp be ? globalObject.[[GetOwnProperty]](N).
. If existingProp is undefined or existingProp.[[Configurable]] is true, then
a. Let desc be the PropertyDescriptor{[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: D}.
6. Else,
a. Let desc be the PropertyDescriptor{[[Value]]: V'}.

7. Perform ? DefinePropertyOrThrow(globalObject, N, desc).

8. Record that the binding for N in ObjRec has been initialized.

9. Perform ? Set(globalObject, N, V, false).
10. Let varDeclaredNames be envRec.[[VarNames]].

Ul oA W N e

11. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
12. Return NormalCompletion(empty).

NOTE Global function declarations are always represented as own properties of the global object. If possible, an
existing own property is reconfigured to have a standard set of attribute values. Steps 10-12 are equivalent to
what calling the InitializeBinding concrete method would do and if globalObject is a Proxy will produce the
same sequence of Proxy trap calls.

Module Environment Records

A module Environment Record is a declarative Environment Record that is used to represent the outer scope of an
ECMAScript Module. In additional to normal mutable and immutable bindings, module Environment Records also provide
immutable import bindings which are bindings that provide indirect access to a target binding that exists in another
Environment Record.

Module Environment Records support all of the declarative Environment Record methods listed in Table 15 and share the
same specifications for all of those methods except for GetBindingValue, DeleteBinding, HasThisBinding and GetThisBinding.

In addition, module Environment Records support the methods listed in Table 20:

Table 20: Additional Methods of Module Environment Records

Method Purpose

CreateImportBinding(N, | Create an immutable indirect binding in a module Environment Record. The String value N is the
M, N2) text of the bound name. M is a Module Record, and N2 is a binding that exists in M's module
Environment Record.

GetThisBinding() Return the value of this Environment Record's this binding.

The behaviour of the additional concrete specification methods for module Environment Records are defined by the
following algorithms:

GetBindingValue (N, S)

The concrete Environment Record method GetBindingValue for module Environment Records returns the value of its bound
identifier whose name is the value of the argument N. However, if the binding is an indirect binding the value of the target

binding is returned. If the binding exists but is uninitialized a ReferenceError is thrown, regardless of the value of S.

8.1.1.5.2

8.1.1.5.3

8.1.1.5.4

8.1.1.5.5

8.1.2

8.1.2.1

1. Let envRec be the module Environment Record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N is an indirect binding, then
a. Let M and N2 be the indirection values provided when this binding for N was created.
b. Let targetEnv be M.[[Environment]].
c. If targetEnv is undefined, throw a ReferenceError exception.
d. Let targetER be targetEnv's EnvironmentRecord.
e. Return ? targetER.GetBindingValue(N2Z2, S).
4. If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.

5. Return the value currently bound to N in envRec.

NOTE Because a Module is always strict mode code, calls to GetBindingValue should always pass true as the value of
S.
DeleteBinding (N)

The concrete Environment Record method DeleteBinding for module Environment Records refuses to delete bindings.

1. Let envRec be the module Environment Record for which the method was invoked.
2. If envRec does not have a binding for the name that is the value of N, return true.

3. Return false.
NOTE The bindings of a module Environment Record are not deletable.
HasThisBinding ()
Module Environment Records provide a this binding.
1. Return true.
GetThisBinding ()
1. Return undefined.
CreatelmportBinding (N, M, N2)

The concrete Environment Record method CreatelmportBinding for module Environment Records creates a new initialized
immutable indirect binding for the name N. A binding must not already exist in this Environment Record for N. M is a Module
Record, and N2 is the name of a binding that exists in M's module Environment Record. Accesses to the value of the new

binding will indirectly access the bound value of the target binding.

1. Let envRec be the module Environment Record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Assert: M is a Module Record.

4. Assert: When M.[[Environment]] is instantiated it will have a direct binding for NZ2.

5. Create an immutable indirect binding in envRec for N that references M and N2 as its target binding and record that the
binding is initialized.

6. Return NormalCompletion(empty).

Lexical Environment Operations
The following abstract operations are used in this specification to operate upon lexical environments:
GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and a Boolean flag

strict. The value of lex may be null. When called, the following steps are performed:

1. If lex is the value null, then

a. Return a value of type Reference whose base value is undefined, whose referenced name is name, and whose
strict reference flag is strict.
2. Let envRec be lex's EnvironmentRecord.
3. Let exists be ? envRec.HasBinding(name).
4. If exists is true, then
a. Return a value of type Reference whose base value is envRec, whose referenced name is name, and whose strict
reference flag is strict.
5. Else,
a. Let outer be the value of lex's outer environment reference.

b. Return ? GetldentifierReference(outer, name, strict).
8.1.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with a Lexical Environment as argument E the following

steps are performed:

1. Let env be a new Lexical Environment.

2. Let envRec be a new declarative Environment Record containing no bindings.
3. Set env's EnvironmentRecord to envRec.

4. Set the outer lexical environment reference of env to E.

5. Return env.
8.1.2.3 NewObjectEnvironment (O, E)

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E as arguments,

the following steps are performed:

1. Let env be a new Lexical Environment.

2. Let envRec be a new object Environment Record containing O as the binding object.
3. Set env's EnvironmentRecord to envRec.

4. Set the outer lexical environment reference of env to E.

5. Return env.

8.1.2.4 NewFunctionEnvironment (F, newTarget)

When the abstract operation NewFunctionEnvironment is called with arguments F and newTarget the following steps are

performed:

1. Assert: F'is an ECMAScript function.
2. Assert: Type(newTarget) is Undefined or Object.
3. Let env be a new Lexical Environment.
4. Let envRec be a new function Environment Record containing no bindings.
5. Set envRec.[[FunctionObject]] to F.
6. If F's [[ThisMode]] internal slot is lexical, set envRec.[[ThisBindingStatus]] to "lexical".
7. Else, set envRec.[[ThisBindingStatus]] to "uninitialized".
8. Let home be the value of F's [[HomeObject]] internal slot.
9. Set envRec.[[HomeObject]] to home.
10. Set envRec.[[NewTarget]] to newTarget.
11. Set env's EnvironmentRecord to envRec.
12. Set the outer lexical environment reference of env to the value of F's [[Environment]] internal slot.
13. Return env.

8.1.2.5 NewGlobalEnvironment (G, thisValue)

When the abstract operation NewGlobalEnvironment is called with arguments G and thisValue, the following steps are

performed:

O 0 N O U1 B W N =

==
[N

. Return env.

8.1.2.6 NewModuleEnvironment (E)

. Let env be a new Lexical Environment.

. Let objRec be a new object Environment Record containing G as the binding object.
. Let dcIRec be a new declarative Environment Record containing no bindings.

. Let globalRec be a new global Environment Record.

. Set globalRec.[[ObjectRecord]] to objRec.

. Set globalRec.[[GlobalThisValue]] to thisValue.

. Set globalRec.[[DeclarativeRecord]] to dclRec.

. Set globalRec.[[VarNames]] to a new empty List.

. Set env's EnvironmentRecord to globalRec.

. Set the outer lexical environment reference of env to null.

When the abstract operation NewModuleEnvironment is called with a Lexical Environment argument E the following steps

are performed:

1. Let env be a new Lexical Environment.

2. Let envRec be a new module Environment Record containing no bindings.

3. Set env's EnvironmentRecord to envRec.

4. Set the outer lexical environment reference of env to E.

5. Return env.

8.2 Realms

Before it is evaluated, all ECMAScript code must be associated with a realm. Conceptually, a realm consists of a set of intrinsic

objects, an ECMAScript global environment, all of the ECMAScript code that is loaded within the scope of that global

environment, and other associated state and resources.

A realm is represented in this specification as a Realm Record with the fields specified in Table 21:

Table 21: Realm Record Fields

Field Name Value Meaning

[[Intrinsics]] Record whose The intrinsic values used by code associated with this realm
field names are
intrinsic keys
and whose
values are
objects

[[GlobalObject]] | Object The global object for this realm

[[GlobalEnv]] Lexical The global environment for this realm
Environment

[[TemplateMap]] | A List of Record { | Template objects are canonicalized separately for each realm using its Realm
[[Strings]]: List, | Record's [[TemplateMap]]. Each [[Strings]] value is a List containing, in source text
[[Array]]: order, the raw String values of a TemplateLiteral that has been evaluated. The
Object}. associated [[Array]] value is the corresponding template object that is passed to a

tag function.

An implementation may define other, implementation specific fields.

8.2.1 CreateRealm ()

The abstract operation CreateRealm with no arguments performs the following steps:

1. Let realmRec be a new Realm Record.

2. Perform Createlntrinsics(realmRec).

3. Set realmRec.[[GlobalObject]] to undefined.

4. Set realmRec.[[GlobalEnv]] to undefined.

5. Set realmRec.[[TemplateMap]] to a new empty List.
6. Return realmRec.

8.2.2 Createlntrinsics (realmRec)
When the abstract operation Createlntrinsics with argument realmRec performs the following steps:

. Let intrinsics be a new Record.

. Set realmRec.[[Intrinsics]] to intrinsics.

. Let objProto be ObjectCreate(null).

. Set intrinsics.[[%ObjectPrototype%]] to objProto.

. Let throwerSteps be the algorithm steps specified in 9.2.7.1 for the % ThrowTypeError% function.
. Let thrower be CreateBuiltinFunction(realmRec, throwerSteps, null).

. Set intrinsics.[[%ThrowTypeError%]] to thrower.

. Let noSteps be an empty sequence of algorithm steps.

O 0 N O U1 B W N =

. Let funcProto be CreateBuiltinFunction(realmRec, noSteps, objProto).

[y
(=}

. Set intrinsics.[[%FunctionPrototype%]] to funcProto.
. Call thrower.[[SetPrototypeOf]](funcProto).
. Perform AddRestrictedFunctionProperties(funcProto, realmRec).

=
wWON

. Set fields of intrinsics with the values listed in Table 7 that have not already been handled above. The field names are the
names listed in column one of the table. The value of each field is a new object value fully and recursively populated
with property values as defined by the specification of each object in clauses 18-26. All object property values are newly
created object values. All values that are built-in function objects are created by performing
CreateBuiltinFunction(realmRec, <steps>, <prototype>, <slots>) where <steps> is the definition of that function
provided by this specification, <prototype> is the specified value of the function's [[Prototype]] internal slot and <slots>
is a list of the names, if any, of the function's specified internal slots. The creation of the intrinsics and their properties
must be ordered to avoid any dependencies upon objects that have not yet been created.

14. Return intrinsics.

8.2.3 SetRealmGlobalObject (realmRec, globalObj, thisValue)

The abstract operation SetRealmGlobalObject with arguments realmRec, globalObj, and thisValue performs the following

steps:

1. If globalObj is undefined, then
a. Let intrinsics be realmRec.[[Intrinsics]].
b. Let globalObj be ObjectCreate(intrinsics.[[%0bjectPrototype%]]).
2. Assert: Type(globalObj) is Object.
3. If thisValue is undefined, let thisValue be globalObj.
4. Set realmRec.[[GlobalObject]] to globalObj.
5. Let newGlobalEnv be NewGlobalEnvironment(globalObj, thisValue).
6. Set realmRec.[[GlobalEnv]] to newGlobalEnv.
7. Return realmRec.

8.2.4 SetDefaultGlobalBindings (realmRec)
The abstract operation SetDefaultGlobalBindings with argument realmRec performs the following steps:

1. Let global be realmRec.[[GlobalObject]].
2. For each property of the Global Object specified in clause 18, do
a. Let name be the String value of the property name.

b. Let desc be the fully populated data property descriptor for the property containing the specified attributes for the
property. For properties listed in 18.2, 18.3, or 18.4 the value of the [[Value]] attribute is the corresponding
intrinsic object from realmRec.

c. Perform ? DefinePropertyOrThrow(global, name, desc).

3. Return global.

8.3 Execution Contexts

An execution context is a specification device that is used to track the runtime evaluation of code by an ECMAScript
implementation. At any point in time, there is at most one execution context that is actually executing code. This is known as
the running execution context.

The execution context stack is used to track execution contexts. The running execution context is always the top element of
this stack. A new execution context is created whenever control is transferred from the executable code associated with the
currently running execution context to executable code that is not associated with that execution context. The newly created
execution context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution progress of its
associated code. Each execution context has at least the state components listed in Table 22.

Table 22: State Components for All Execution Contexts

Component Purpose

code evaluation | Any state needed to perform, suspend, and resume evaluation of the code associated with this execution
state context.

Function If this execution context is evaluating the code of a function object, then the value of this component is
that function object. If the context is evaluating the code of a Script or Module, the value is null.

Realm The Realm Record from which associated code accesses ECMAScript resources.

ScriptOrModule | The Module Record or Script Record from which associated code originates. If there is no originating
script or module, as is the case for the original execution context created in InitializeHostDefinedRealm,
the value is null.

Evaluation of code by the running execution context may be suspended at various points defined within this specification.
Once the running execution context has been suspended a different execution context may become the running execution
context and commence evaluating its code. At some later time a suspended execution context may again become the running
execution context and continue evaluating its code at the point where it had previously been suspended. Transition of the
running execution context status among execution contexts usually occurs in stack-like last-in/first-out manner. However,

some ECMAScript features require non-LIFO transitions of the running execution context.

The value of the Realm component of the running execution context is also called the current Realm Record. The value of the
Function component of the running execution context is also called the active function object.

Execution contexts for ECMAScript code have the additional state components listed in Table 23.

Table 23: Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment | Identifies the Lexical Environment used to resolve identifier references made by code within this
execution context.

VariableEnvironment | Identifies the Lexical Environment whose EnvironmentRecord holds bindings created by
VariableStatements within this execution context.

8.3.1

8.3.2

8.3.3

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical Environments.
When an execution context is created its LexicalEnvironment and VariableEnvironment components initially have the same

value.

Execution contexts representing the evaluation of generator objects have the additional state components listed in Table 24.

Table 24: Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly manipulated by
algorithms within this specification. Hence when the terms “LexicalEnvironment”, and “VariableEnvironment” are used

without qualification they are in reference to those components of the running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact of an
ECMAScript implementation. It is impossible for ECMAScript code to directly access or observe an execution context.

GetActiveScriptOrModule ()

The GetActiveScriptOrModule abstract operation is used to determine the running script or module, based on the active

function object. GetActiveScriptOrModule performs the following steps:

1. If the execution context stack is empty, return null.

2. Let ec be the topmost execution context on the execution context stack whose Function component's
[[ScriptOrModule]] component is not null.

3. If such an execution context exists, return ec's Function component's [[ScriptOrModule]] slot's value.

4. Otherwise, let ec be the running execution context.

5. Assert: ec's ScriptOrModule component is not null.

6. Return ec's ScriptOrModule component.

ResolveBinding (name|[,env])

The ResolveBinding abstract operation is used to determine the binding of name passed as a String value. The optional
argument env can be used to explicitly provide the Lexical Environment that is to be searched for the binding. During

execution of ECMAScript code, ResolveBinding is performed using the following algorithm:

1. If env was not passed or if env is undefined, then
a. Let env be the running execution context's LexicalEnvironment.

2. Assert: env is a Lexical Environment.

3. If the code matching the syntactic production that is being evaluated is contained in strict mode code, let strict be true,

else let strict be false.
4. Return ? GetldentifierReference(env, name, strict).

NOTE The result of ResolveBinding is always a Reference value with its referenced name component equal to the

name argument.

GetThisEnvironment ()

The abstract operation GetThisEnvironment finds the Environment Record that currently supplies the binding of the

keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context's LexicalEnvironment.
2. Repeat

a. Let envRec be lex's EnvironmentRecord.

b. Let exists be envRec.HasThisBinding().

8.3.4

8.3.5

8.3.6

8.4

c. If exists is true, return envRec.
d. Let outer be the value of lex's outer environment reference.

e. Let lex be outer.

NOTE The loop in step 2 will always terminate because the list of environments always ends with the global

environment which has a this binding.

ResolveThisBinding ()

The abstract operation ResolveThisBinding determines the binding of the keyword this using the LexicalEnvironment of the

running execution context. ResolveThisBinding performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Return ? envRec.GetThisBinding().

GetNewTarget ()

The abstract operation GetNewTarget determines the NewTarget value using the LexicalEnvironment of the running

execution context. GetNewTarget performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Assert: envRec has a [[NewTarget]] field.
3. Return envRec.[[NewTarget]].

GetGlobalObject ()

The abstract operation GetGlobalObject returns the global object used by the currently running execution context.
GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
2. Let currentRealm be ctx's Realm.
3. Return currentRealm.[[GlobalObject]].

Jobs and Job Queues

AJob is an abstract operation that initiates an ECMAScript computation when no other ECMAScript computation is currently
in progress. A Job abstract operation may be defined to accept an arbitrary set of job parameters.

Execution of a Job can be initiated only when there is no running execution context and the execution context stack is empty.
A PendingJob is a request for the future execution of a Job. A PendingJob is an internal Record whose fields are specified in
Table 25. Once execution of a Job is initiated, the Job always executes to completion. No other Job may be initiated until the
currently running Job completes. However, the currently running Job or external events may cause the enqueuing of
additional Pending]obs that may be initiated sometime after completion of the currently running Job.

8.4.1

Table 25: Pendingjob Record Fields

Field Name Value Meaning

[[Job]] The name of a | This is the abstract operation that is performed when execution of this PendingJob is
Job abstract initiated. Jobs are abstract operations that use NextJob rather than Return to
operation indicate that they have completed.

[[Arguments]] A List The List of argument values that are to be passed to [[Job]] when it is activated.

[[Realm]] A Realm The Realm Record for the initial execution context when this PendingJob is initiated.
Record

[[ScriptOrModule]] | A Script The script or module for the initial execution context when this PendingJob is
Record or initiated.
Module
Record

[[HostDefined]] Any, default Field reserved for use by host environments that need to associate additional
value is information with a pending Job.
undefined.

A Job Queue is a FIFO queue of Pending]ob records. Each Job Queue has a name and the full set of available Job Queues are
defined by an ECMAScript implementation. Every ECMAScript implementation has at least the Job Queues defined in Table
26.

Table 26: Required Job Queues

Name Purpose

Scriptjobs Jobs that validate and evaluate ECMAScript Script and Module source text. See clauses 10 and 15.

PromiseJobs | Jobs that are responses to the settlement of a Promise (see 25.4).

A request for the future execution of a Job is made by enqueueing, on a Job Queue, a PendingJob record that includes a Job
abstract operation name and any necessary argument values. When there is no running execution context and the execution
context stack is empty, the ECMAScript implementation removes the first Pending]ob from a Job Queue and uses the

information contained in it to create an execution context and starts execution of the associated Job abstract operation.

The Pending]ob records from a single Job Queue are always initiated in FIFO order. This specification does not define the
order in which multiple Job Queues are serviced. An ECMAScript implementation may interweave the FIFO evaluation of the
Pending]ob records of a Job Queue with the evaluation of the PendingJob records of one or more other Job Queues. An

implementation must define what occurs when there are no running execution context and all Job Queues are empty.

NOTE Typically an ECMAScript implementation will have its Job Queues pre-initialized with at least one PendingJob
and one of those Jobs will be the first to be executed. An implementation might choose to free all resources and
terminate if the current Job completes and all Job Queues are empty. Alternatively, it might choose to wait for a
some implementation specific agent or mechanism to enqueue new PendingJob requests.

The following abstract operations are used to create and manage Jobs and Job Queues:
Enqueue]ob (queueName, job, arguments)

The Enqueuejob abstract operation requires three arguments: queueName, job, and arguments. It performs the following
steps:

1. Assert: Type(queueName) is String and its value is the name of a Job Queue recognized by this implementation.
2. Assert: job is the name of a Job.

3. Assert: arguments is a List that has the same number of elements as the number of parameters required by job.

4. Let callerContext be the running execution context.

5. Let callerRealm be callerContext's Realm.

6. Let callerScriptOrModule be callerContext's ScriptOrModule.

7. Let pending be Pending]Job{ [[Job]]: job, [[Arguments]]: arguments, [[Realm]]: callerRealm, [[ScriptOrModule]]:
callerScriptOrModule, [[HostDefined]]: undefined }.

8. Perform any implementation or host environment defined processing of pending. This may include modifying the
[[HostDefined]] field or any other field of pending.

9. Add pending at the back of the Job Queue named by queueName.

10. Return NormalCompletion(empty).

8.4.2 NextJob
An algorithm step such as:
1. Next]ob result.
is used in Job abstract operations in place of:
1. Return result.

Job abstract operations must not contain a Return step or a ReturnlfAbrupt step. The NextJob result operation is equivalent
to the following steps:

. If result is an abrupt completion, perform HostReportErrors(« result.[[Value]] »).
. Suspend the running execution context and remove it from the execution context stack.

. Assert: The execution context stack is now empty.

BOwWw N e

. Let nextQueue be a non-empty Job Queue chosen in an implementation defined manner. If all Job Queues are empty, the
result is implementation defined.

. Let nextPending be the Pending]ob record at the front of nextQueue. Remove that record from nextQueue.

. Let newContext be a new execution context.

Set newContext's Function to null.

. Set newContext's Realm to nextPending.[[Realm]].

© ® N o w!

. Set newContext's ScriptOrModule to nextPending.[[ScriptOrModule]].

10. Push newContext onto the execution context stack; newContext is now the running execution context.

11. Perform any implementation or host environment defined job initialization using nextPending.

12. Perform the abstract operation named by nextPending.[[Job]] using the elements of nextPending.[[Arguments]] as its

arguments.

8.5 InitializeHostDefinedRealm ()

The abstract operation InitializeHostDefinedRealm performs the following steps:

. Let realm be CreateRealm().

. Let newContext be a new execution context.

Set the Function of newContext to null.

. Set the Realm of newContext to realm.

. Set the ScriptOrModule of newContext to null.

. Push newContext onto the execution context stack; newContext is now the running execution context.

N o U AW N R

. If the host requires use of an exotic object to serve as realm's global object, let global be such an object created in an
implementation defined manner. Otherwise, let global be undefined, indicating that an ordinary object should be
created as the global object.

8. If the host requires that the this binding in realm's global scope return an object other than the global object, let
thisValue be such an object created in an implementation defined manner. Otherwise, let thisValue be undefined,
indicating that realm's global this binding should be the global object.

9. Perform SetRealmGlobalObject(realm, global, thisValue).

9

9.1

9.1.1

9.1.1.1

9.1.2

9.1.2.1

10. Let globalObj be ? SetDefaultGlobalBindings(realm).

11. Create any implementation defined global object properties on globalObj.

12. In an implementation dependent manner, obtain the ECMAScript source texts (see clause 10) and any associated host-
defined values for zero or more ECMAScript scripts and/or ECMAScript modules. For each such sourceText and
hostDefined,

a. If sourceText is the source code of a script, then
i. Perform EnqueueJob("ScriptJobs”, ScriptEvaluation]ob, « sourceText, hostDefined »).
b. Else sourceText is the source code of a module,
i. Perform Enqueuejob("ScriptJobs”, TopLevelModuleEvaluationjob, « sourceText, hostDefined »).
13. NextJob NormalCompletion(undefined).

Ordinary and Exotic Objects Behaviours

Ordinary Object Internal Methods and Internal Slots

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is either null or an object and is
used for implementing inheritance. Data properties of the [[Prototype]] object are inherited (are visible as properties of the
child object) for the purposes of get access, but not for set access. Accessor properties are inherited for both get access and

set access.

Every ordinary object has a Boolean-valued [[Extensible]] internal slot that controls whether or not properties may be added
to the object. If the value of the [[Extensible]] internal slot is false then additional properties may not be added to the object.
In addition, if [[Extensible]] is false the value of the [[Prototype]] internal slot of the object may not be modified. Once the

value of an object's [[Extensible]] internal slot has been set to false it may not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary object, P is a property key value, V is any ECMAScript
language value, and Desc is a Property Descriptor record.

Each ordinary object internal method delegates to a similarly-named abstract operation. If such an abstract operation
depends on another internal method, then the internal method is invoked on O rather than calling the similarly-named
abstract operation directly. These semantics ensure that exotic objects have their overridden internal methods invoked when

ordinary object internal methods are applied to them.

[[GetPrototypeOf]] ()
When the [[GetPrototypeOf]] internal method of O is called, the following steps are taken:
1. Return ! OrdinaryGetPrototypeOf(0).
OrdinaryGetPrototypeOf (0)
When the abstract operation OrdinaryGetPrototypeOf is called with Object O, the following steps are taken:

1. Return the value of the [[Prototype]] internal slot of 0.

[[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of O is called with argument V, the following steps are taken:
1. Return ! OrdinarySetPrototypeOf(O, V).
OrdinarySetPrototypeOf (0, V)
When the abstract operation OrdinarySetPrototypeOf is called with Object O and value V, the following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.
2. Let extensible be the value of the [[Extensible]] internal slot of O.

3. Let current be the value of the [[Prototype]] internal slot of O.
4. If SameValue(V, current) is true, return true.
5. If extensible is false, return false.
6. Letp be V.
7. Let done be false.
8. Repeat while done is false,
a. If p is null, let done be true.
b. Else, if SameValue(p, 0) is true, return false.
c. Else,
i. If the [[GetPrototypeOf]] internal method of p is not the ordinary object internal method defined in 9.1.1, let
done be true.
ii. Else, let p be the value of p's [[Prototype]] internal slot.
9. Set the value of the [[Prototype]] internal slot of O to V.
10. Return true.

NOTE The loop in step 8 guarantees that there will be no circularities in any prototype chain that only includes
objects that use the ordinary object definitions for [[GetPrototypeOf]] and [[SetPrototypeOf]].

9.1.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called, the following steps are taken:
1. Return ! OrdinarylsExtensible(0).
9.1.3.1 OrdinarylsExtensible (0)
When the abstract operation OrdinarylsExtensible is called with Object O, the following steps are taken:

1. Return the value of the [[Extensible]] internal slot of O.
9.1.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called, the following steps are taken:
1. Return ! OrdinaryPreventExtensions(0).
9.1.4.1 OrdinaryPreventExtensions (0)
When the abstract operation OrdinaryPreventExtensions is called with Object O, the following steps are taken:

1. Set the value of the [[Extensible]] internal slot of O to false.
2. Return true.

9.1.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:

1. Return ! OrdinaryGetOwnProperty(O, P).
9.1.5.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P, the following steps
are taken:

1. Assert: [sPropertyKey(P) is true.

2. If O does not have an own property with key P, return undefined.
3. Let D be a newly created Property Descriptor with no fields.

4. Let X be O's own property whose key is P.

5. If X is a data property, then

9.1.6

9.1.6.1

9.1.6.2

9.1.6.3

a. Set D.[[Value]] to the value of X's [[Value]] attribute.

b. Set D.[[Writable]] to the value of X's [[Writable]] attribute.
6. Else X is an accessor property, so

a. Set D.[[Get]] to the value of X's [[Get]] attribute.

b. Set D.[[Set]] to the value of X's [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
9. Return D.

[[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and Property Descriptor Desc, the

following steps are taken:
1. Return ? OrdinaryDefineOwnProperty(O, P, Desc).
OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and Property Descriptor
Desc, the following steps are taken:

1. Let current be ? 0.[[GetOwnProperty]](P).
2. Let extensible be the value of the [[Extensible]] internal slot of O.
3. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).

IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and Property
Descriptors Desc, and Current, the following steps are taken:

1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).
ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P, Boolean value
extensible, and Property Descriptors Desc, and current, the following steps are taken:

This algorithm contains steps that test various fields of the Property Descriptor Desc for specific values. The fields that are

tested in this manner need not actually exist in Desc. If a field is absent then its value is considered to be false.
NOTE 1 If undefined is passed as the O argument only validation is performed and no object updates are performed.

1. Assert: If O is not undefined, then IsPropertyKey(P) is true.
2. If current is undefined, then
a. If extensible is false, return false.
b. Assert: extensible is true.
c. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then
i. If O is not undefined, create an own data property named P of object O whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of an attribute field of
Desc is absent, the attribute of the newly created property is set to its default value.
d. Else Desc must be an accessor Property Descriptor,
i. If O is not undefined, create an own accessor property named P of object O whose [[Get]], [[Set]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of an attribute field of
Desc is absent, the attribute of the newly created property is set to its default value.
e. Return true.
3. Return true, if every field in Desc is absent.
4. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same value as the

corresponding field in current when compared using the SameValue algorithm.

5. If the [[Configurable]] field of current is false, then
a. Return false, if the [[Configurable]] field of Desc is true.
b. Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and Desc are the
Boolean negation of each other.
6. If IsGenericDescriptor(Desc) is true, no further validation is required.
7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Return false, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then
i. If 0 is not undefined, convert the property named P of object O from a data property to an accessor property.
Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]] attributes and
set the rest of the property's attributes to their default values.
c. Else,
i. If O is not undefined, convert the property named P of object O from an accessor property to a data property.
Preserve the existing values of the converted property's [[Configurable]] and [[Enumerable]] attributes and
set the rest of the property's attributes to their default values.
8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. If the [[Configurable]] field of current is false, then
i. Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.
ii. If the [[Writable]] field of current is false, then
1. Return false, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]], current.[[Value]]) is
false.
b. Else the [[Configurable]] field of current is true, so any change is acceptable.
9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,
a. If the [[Configurable]] field of current is false, then
i. Return false, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is false.
ii. Return false, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]]) is false.
10. If O is not undefined, then
a. For each field of Desc that is present, set the corresponding attribute of the property named P of object O to the
value of the field.
11. Return true.

NOTE 2 Step 8.b allows any field of Desc to be different from the corresponding field of current if current's
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]]
attribute is false. This is allowed because a true [[Configurable]] attribute would permit an equivalent
sequence of calls where [[Writable]] is first set to true, a new [[Value]] is set, and then [[Writable]] is set to
false.

9.1.7 [[HasProperty]](P)

When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:
1. Return ? OrdinaryHasProperty(O, P).
9.1.7.1 OrdinaryHasProperty (O, P)

When the abstract operation OrdinaryHasProperty is called with Object O and with property key P, the following steps are
taken:

1. Assert: [sPropertyKey(P) is true.
2. Let hasOwn be ? O.[[GetOwnProperty]](P).
3. If hasOwn is not undefined, return true.
4. Let parent be ? 0.[[GetPrototypeOf]]().
5. If parent is not null, then

a. Return ? parent.[[HasProperty]](P).
6. Return false.

9.1.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of O is called with property key P and ECMAScript language value Receiver, the following
steps are taken:

1. Return ? OrdinaryGet(O, P, Receiver).
9.1.8.1 OrdinaryGet (O, P, Receiver)

When the abstract operation OrdinaryGet is called with Object O, property key P, and ECMAScript language value Receiver,

the following steps are taken:

1. Assert: [sPropertyKey(P) is true.
2. Let desc be ? 0.[[GetOwnProperty]](P).
3. If desc is undefined, then
a. Let parent be ? O.[[GetPrototypeOf]]().
b. If parent is null, return undefined.
c. Return ? parent.[[Get]] (P, Receiver).
4. If IsDataDescriptor(desc) is true, return desc.[[Value]].
5. Assert: [sAccessorDescriptor(desc) is true.
6. Let getter be desc.[[Get]].
7. If getter is undefined, return undefined.
8. Return ? Call(getter, Receiver).

9.1.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value V, and ECMAScript language value Receiver, the

following steps are taken:

1. Return ? OrdinarySet(O, P, V, Receiver).

9.1.9.1 OrdinarySet (O, P, V, Receiver)

When the abstract operation OrdinarySet is called with Object O, property key P, value V, and ECMAScript language value
Receiver, the following steps are taken:

1. Assert: [sPropertyKey(P) is true.
2. Let ownDesc be ? 0.[[GetOwnProperty]](P).
3. If ownDesc is undefined, then
a. Let parent be ? O.[[GetPrototypeOf]]().
b. If parent is not null, then
i. Return ? parent.[[Set]](P, V, Receiver).
c. Else,
i. Let ownDesc be the PropertyDescriptor{[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.
4. If IsDataDescriptor(ownDesc) is true, then
a. If ownDesc.[[Writable]] is false, return false.
b. If Type(Receiver) is not Object, return false.
c. Let existingDescriptor be ? Receiver.[[GetOwnProperty]](P).
d. If existingDescriptor is not undefined, then
i. If [sAccessorDescriptor(existingDescriptor) is true, return false.
ii. If existingDescriptor.[[Writable]] is false, return false.
iii. Let valueDesc be the PropertyDescriptor{[[Value]]: V}.
iv. Return ? Receiver.[[DefineOwnProperty]] (P, valueDesc).
e. Else Receiver does not currently have a property P,
i. Return ? CreateDataProperty(Receiver, P, V).
5. Assert: [sAccessorDescriptor(ownDesc) is true.

6. Let setter be ownDesc.[[Set]].

7. If setter is undefined, return false.
8. Perform ? Call(setter, Receiver, « V »).
9. Return true.

9.1.10 [[Delete]] (P)
When the [[Delete]] internal method of O is called with property key P, the following steps are taken:
1. Return ? OrdinaryDelete(O, P).
9.1.10.1 OrdinaryDelete (O, P)
When the abstract operation OrdinaryDelete is called with Object O and property key P, the following steps are taken:

1. Assert: [sPropertyKey(P) is true.

2. Let desc be ? 0.[[GetOwnProperty]](P).

3. If desc is undefined, return true.

4. If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.

5. Return false.

9.1.11 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of O is called, the following steps are taken:
1. Return ! OrdinaryOwnPropertyKeys(0).
9.1.11.1 OrdinaryOwnPropertyKeys (0)
When the abstract operation OrdinaryOwnPropertyKeys is called with Object O, the following steps are taken:

1. Let keys be a new empty List.
2. For each own property key P of O that is an integer index, in ascending numeric index order
a. Add P as the last element of keys.
3. For each own property key P of O that is a String but is not an integer index, in ascending chronological order of
property creation
a. Add P as the last element of keys.
4. For each own property key P of O that is a Symbol, in ascending chronological order of property creation
a. Add P as the last element of keys.
5. Return keys.

9.1.12 ObjectCreate (proto [, internalSlotsList])

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime creation of new

ordinary objects. The optional argument internalSlotsList is a List of the names of additional internal slots that must be
defined as part of the object. If the list is not provided, a new empty List is used. This abstract operation performs the

following steps:

1. If internalSlotsList was not provided, let internalSlotsList be a new empty List.

2. Let obj be a newly created object with an internal slot for each name in internalSlotsList.

3. Set obj's essential internal methods to the default ordinary object definitions specified in 9.1.
4. Set the [[Prototype]] internal slot of 0bj to proto.

5. Set the [[Extensible]] internal slot of obj to true.

6. Return obj.

9.1.13 OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto [, internalSlotsList])

9.1.14

9.2

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototype]] value is retrieved
from a constructor's prototype property, if it exists. Otherwise the intrinsic named by intrinsicDefaultProto is used for
[[Prototype]]. The optional internalSlotsList is a List of the names of additional internal slots that must be defined as part of
the object. If the list is not provided, a new empty List is used. This abstract operation performs the following steps:

1. Assert: intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The corresponding
object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.

2. Let proto be ? GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

3. Return ObjectCreate(proto, internalSlotsList).

GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be used to create an
object corresponding to a specific constructor. The value is retrieved from the constructor's prototype property, if it exists.
Otherwise the intrinsic named by intrinsicDefaultProto is used for [[Prototype]]. This abstract operation performs the
following steps:

1. Assert: intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The corresponding
object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.
2. Assert: IsCallable(constructor) is true.
3. Let proto be ? Get(constructor, "prototype").
4. If Type(proto) is not Object, then
a. Let realm be ? GetFunctionRealm(constructor).
b. Let proto be realm's intrinsic object named intrinsicDefaultProto.
5. Return proto.

NOTE If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the realm of
the constructor function rather than from the running execution context.

ECMAScript Function Objects

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical environment and support the
dynamic evaluation of that code. An ECMAScript function object is an ordinary object and has the same internal slots and the
same internal methods as other ordinary objects. The code of an ECMAScript function object may be either strict mode code
(10.2.1) or non-strict mode code. An ECMAScript function object whose code is strict mode code is called a strict function.
One whose code is not strict mode code is called a non-strict function.

ECMAScript function objects have the additional internal slots listed in Table 27.

Table 27: Internal Slots of ECMAScript Function Objects

Internal Slot Type Description

[[Environment]] Lexical The Lexical Environment that the function was closed over. Used as the outer

Environment | environment when evaluating the code of the function.

[[FormalParameters]] | Parse Node | The root parse node of the source text that defines the function's formal parameter
list.

[[FunctionKind]] String Either "normal”, "classConstructor" or "generator".

[[ECMAScriptCode]] | Parse Node [The root parse node of the source text that defines the function's body.

[[ConstructorKind]] | String Either "base" or "derived".

[[Realm]] Realm The realm in which the function was created and which provides any intrinsic
Record objects that are accessed when evaluating the function.

[[ScriptOrModule]] Script The script or module in which the function was created.
Record or
Module
Record

[[ThisMode]] (lexical, Defines how this references are interpreted within the formal parameters and
strict, code body of the function. lexical means that this refers to the this value of a
global) lexically enclosing function. strict means that the this value is used exactly as

provided by an invocation of the function. global means that a this value of

undefined is interpreted as a reference to the global object.

[[Strict]] Boolean true if this is a strict mode function, false if this is not a strict mode function.

[[HomeObject]] Object If the function uses super, this is the object whose [[GetPrototypeOf]] provides the
object where super property lookups begin.

All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that are also
constructors in addition have the [[Construct]] internal method.

9.2.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for an ECMAScript function object F is called with parameters thisArgument and argumentsList, a
List of ECMAScript language values. The following steps are taken:

. Assert: F is an ECMAScript function object.

. If F's [[FunctionKind]] internal slot is "classConstructor”, throw a TypeError exception.

. Let callerContext be the running execution context.

. Let calleeContext be PrepareForOrdinaryCall(F, undefined).

. Assert: calleeContext is now the running execution context.

. Perform OrdinaryCallBind This(F, calleeContext, thisArgument).

. Let result be OrdinaryCallEvaluateBody(F, argumentsList).

. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.

O© 0 N O U1 H W N =

. If result.[[Type]] is return, return NormalCompletion(result.[[Value]]).
. ReturnIfAbrupt(result).
. Return NormalCompletion(undefined).

==
[N

NOTE When calleeContext is removed from the execution context stack in step 8 it must not be destroyed if it is

suspended and retained for later resumption by an accessible generator object.

9.2.1.1 PrepareForOrdinaryCall (F, newTarget)

When the abstract operation PrepareForOrdinaryCall is called with function object F and ECMAScript language value

new

1
2
3
4
5.
6.
7
8
9
10.
11
12.

13.
14.

Target, the following steps are taken:

. Assert: Type(newTarget) is Undefined or Object.

. Let callerContext be the running execution context.

. Let calleeContext be a new ECMAScript code execution context.

. Set the Function of calleeContext to F.

Let calleeRealm be the value of F's [[Realm]] internal slot.

. Set the Realm of calleeContext to calleeRealm.

. Set the ScriptOrModule of calleeContext to the value of F's [[ScriptOrModule]] internal slot.
. Let localEnv be NewFunctionEnvironment(F, newTarget).

. Set the LexicalEnvironment of calleeContext to localEnv.

Set the VariableEnvironment of calleeContext to localEnv.

If callerContext is not already suspended, suspend callerContext.

Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
NOTE Any exception objects produced after this point are associated with calleeRealm.

Return calleeContext.

9.2.1.2 OrdinaryCallBindThis (F, calleeContext, thisArgument)

When the abstract operation OrdinaryCallBindThis is called with function object F, execution context calleeContext, and

ECMAScript value thisArgument, the following steps are taken:

1
2
3
4
5
6.

7
8
9

. Let thisMode be the value of F's [[ThisMode]] internal slot.
. If thisMode is lexical, return NormalCompletion(undefined).
. Let calleeRealm be the value of F's [[Realm]] internal slot.
. Let localEnv be the LexicalEnvironment of calleeContext.
. If thisMode is strict, let thisValue be thisArgument.
. Else,
a. If thisArgument is null or undefined, then
i. Let globalEnv be calleeRealm.[[GlobalEnv]].
ii. Let globalEnvRec be globalEnv's EnvironmentRecord.
iii. Let thisValue be globalEnvRec.[[GlobalThisValue]].
b. Else,
i. Let thisValue be ! ToObject(thisArgument).
ii. NOTE ToObject produces wrapper objects using calleeRealm.

. Let envRec be localEnv's EnvironmentRecord.

. Assert: The next step never returns an abrupt completion because envRec.[[ThisBindingStatus]] is not "initialized".

. Return envRec.BindThisValue(thisValue).

9.2.1.3 OrdinaryCallEvaluateBody (F, argumentsList)

When the abstract operation OrdinaryCallEvaluateBody is called with function object F and List argumentsList, the following

step

1
2

s are taken:

. Perform ? FunctionDeclarationInstantiation(F, argumentsList).

. Return the result of EvaluateBody of the parsed code that is the value of F's [[ECMAScriptCode]] internal slot passing F

as the argument.

9.2.2 [[Construct]] (argumentsList, newTarget)

The
new

1
2
3

[[Construct]] internal method for an ECMAScript Function object F is called with parameters argumentsList and
Target. argumentsList is a possibly empty List of ECMAScript language values. The following steps are taken:

. Assert: Fis an ECMAScript function object.
. Assert: Type(newTarget) is Object.
. Let callerContext be the running execution context.

4. Let kind be F's [[ConstructorKind]] internal slot.
. If kind is "base", then

[$2}

a. Let thisArgument be ? OrdinaryCreateFromConstructor(newTarget, "%0bjectPrototype%").
. Let calleeContext be PrepareForOrdinaryCall(F, newTarget).
. Assert: calleeContext is now the running execution context.
. If kind is "base", perform OrdinaryCallBindThis(F, calleeContext, thisArgument).

O© 0 N O

. Let constructorEnv be the LexicalEnvironment of calleeContext.
10. Let envRec be constructorEnv's EnvironmentRecord.
11. Let result be OrdinaryCallEvaluateBody(F, argumentsList).
12. Remove calleeContext from the execution context stack and restore callerContext as the running execution context.
13. If result.[[Type]] is return, then
a. If Type(result.[[Value]]) is Object, return NormalCompletion(result.[[Value]]).
b. If kind is "base", return NormalCompletion(thisArgument).
c. If result.[[Value]] is not undefined, throw a TypeError exception.
14. Else, ReturnlfAbrupt(result).
15. Return ? envRec.GetThisBinding().

9.2.3 FunctionAllocate (functionPrototype, strict, functionKind)

The abstract operation FunctionAllocate requires the three arguments functionPrototype, strict and functionKind.
FunctionAllocate performs the following steps:

. Assert: Type(functionPrototype) is Object.

. Assert: functionKind is either "normal”, "non-constructor"” or "generator".
. If functionKind is "normal", let needsConstruct be true.

. Else, let needsCon