

Understanding JavaScript Promises

Nicholas C. Zakas

© 2020 - 2022 Nicholas C. Zakas

Contents

Introduction . 1
About This Book . 1
Acknowledgments . 3

1. Promise Basics . 4
The Promise Lifecycle . 4
Creating New (Unsettled) Promises . 10
Creating Settled Promises . 13
Summary . 16

2. Chaining Promises . 18
Catching Errors . 19
Using finally() in Promise Chains . 20
Returning Values in Promise Chains . 23
Returning Promises in Promise Chains . 24
Summary . 29

3. Working with Multiple Promises . 30
The Promise.all() Method . 30
The Promise.allSettled() Method . 36
The Promise.any() Method . 41
The Promise.race() Method . 44
Summary . 47

Final Thoughts . 48
Purchase the Full Version . 48
Help and Support . 48
Follow the Author . 48

Introduction
One of the most powerful aspects of JavaScript is how easily it handles asynchronous programming.
As a language created for the web, JavaScript needed to respond to user interactions such as clicks
and key presses from the beginning, and so event handlers such as onclick were created. Event
handlers allowed developers to specify a function to execute at some later point in time in reaction
to an event.

Node.js further popularized asynchronous programming in JavaScript by using callback functions
in addition to events. As more and more programs started using asynchronous programming, events
and callbacks were no longer sufficient to support everything developers wanted to do. Promises are
the solution to this problem.

Promises are another option for asynchronous programming, and they work like futures and
deferreds do in other languages. A promise specifies some code to be executed later (as with events
and callbacks) and also explicitly indicates whether the code succeeded or failed at its job. You can
chain promises together based on success or failure in ways that make your code easier to understand
and debug.

About This Book

The goal of this book is to explain how JavaScript promises work while giving practical examples of
when to use them. All new asynchronous JavaScript APIs will be built with promises going forward,
and so promises are a central concept to understanding JavaScript as a whole. My hope is that this
book will give you the information you need to successfully use promises in your projects.

Browser, Node.js, and Deno Compatibility

There are multiple JavaScript runtimes that you may use, such as web browsers, Node.js, and Deno.
This book doesn’t attempt to address differences between these JavaScript runtimes unless they are
so different as to be confusing. In general, this book focuses on promises as described in ECMA-262
and only talks about differences in JavaScript runtimes when they are substantially different. As
such, it’s possible that your JavaScript runtime may not conform to the standards-based behavior
described in this book.

Who This Book Is for

This book is intended as a guide for those who are already familiar with JavaScript. In particular,
this book is aimed at intermediate-to-advanced JavaScript developers who work in web browsers,
Node.js, or Deno and who want to learn how promises work.

Introduction 2

This book is not for beginners who have never written JavaScript. You will need to have a good,
basic understanding of the language to make use of this book.

Overview

Each of this book’s three chapters covers a different aspect of JavaScript promises. Many chapters
cover promise APIs directly, and each chapter builds upon the preceding chapters in a way that
allows you to build up your knowledge gradually. All chapters include code examples to help you
learn new syntax and concepts.

Chapter 1: Promise Basics introduces the concept of promises, how they work, and different ways
to create and use them.

Chapter 2: Chaining Promises discusses the various ways to chain multiple promises together to
make composing asynchronous operations easier.

Chapter 3: Working with Multiple Promises explains the built-in JavaScript methods designed to
monitor and respond to multiple promises executing in parallel.

Conventions Used

The following typographical conventions are used in this book:

• Italics introduces new terms
• Constant width indicates a piece of code or filename

All JavaScript code examples are written as modules (also known as ECMAScript modules or ESM).

Additionally, longer code examples are contained in constant width code blocks such as:

1 function doSomething() {

2 // empty

3 }

Within a code block, comments to the right of a console.log() statement indicate the output you’ll
see in the browser or Node.js console when the code is executed. For example:

1 console.log("Hi"); // "Hi"

If a line of code in a code block throws an error, this is also indicated to the right of the code:

1 doSomething(); // error!

Introduction 3

Help and Support

If you have questions as you read this book, please send amessage tomymailing list: books@humanwhocodes.com.
Be sure to mention the title of this book in your subject line.

Acknowledgments

I’m grateful to my father, Speros Zakas, for copyediting this book and for Rob Friesel’s technical
editing. You both have made this book much better than it was.

Thanks to everyone who reviewed early versions of this book and provided feedback: Mike Sherov,
David Hund, Murat Corlu, and Chris Ferdnandi.

1. Promise Basics
While promises are often associated with asynchronous operations, they are simply placeholders
for values. The value may already be known or, more commonly, the value may be the result of an
asynchronous operation. Instead of subscribing to an event or passing a callback to a function, a
function can return a promise, like this:

1 // fetch() promises to complete at some point in the future

2 const promise = fetch("books.json");

The fetch() function is a common utility function in JavaScript runtimes that makes network
requests. The call to fetch() doesn’t actually complete a network request immediately; that will
happen later. Instead, the function returns a promise object (stored in the promise variable in this
example, but you can name it whatever you want) representing the asynchronous operation so you
can work with it in the future. Exactly when you’ll be able to work with that result depends entirely
on how the promise’s lifecycle plays out.

The Promise Lifecycle

Each promise goes through a short lifecycle starting in the pending state, which indicates that
promise hasn’t completed yet. A pending promise is considered unsettled. The promise in the
previous example is in the pending state as soon as the fetch() function returns it. Once the promise
completes, the promise is considered settled and enters one of two possible states (see Figure 1-1):

1. Fulfilled: The promise has completed successfully.
2. Rejected: The promise didn’t complete successfully due to either an error or some other cause.

1. Promise Basics 5

Figure 1-1: Promise states

An internal [[PromiseState]] property is set to "pending", "fulfilled", or "rejected" to reflect
the promise’s state. This property isn’t exposed on promise objects, so you can’t determine which
state the promise is in programmatically. But you can take a specific action when a promise changes
state by using the then() method.

Assigning Handlers with then()

The then() method is present on all promises and takes two arguments. The first argument is a
function to call when the promise is fulfilled, called the fulfillment handler. Any additional data
related to the asynchronous operation is passed to this function. The second argument is a function
to call when the promise is rejected, called the rejection handler. Similar to the fulfillment handler,
the rejection handler is passed any additional data related to the rejection.

Any object that implements the then()method in this way is called a thenable. All promises
are thenables, but not all thenables are promises.

Both arguments to then() are optional, so you can listen for any combination of fulfillment and
rejection. For example, consider this set of then() calls:

1. Promise Basics 6

1 const promise = fetch("books.json");

2

3 // add a fulfillment and rejection handler

4 promise.then(response => {

5 // fulfillment

6 console.log(response.status);

7 }, reason => {

8 // rejection

9 console.error(reason.message);

10 });

11

12 // add another fulfillment handler

13 promise.then(response => {

14 // fulfillment

15 console.log(response.statusText);

16 });

17

18 // add another rejection handler

19 promise.then(null, reason => {

20 // rejection

21 console.error(reason.message);

22 });

All three then() calls operate on the same promise. The first call assigns both a fulfillment and a
rejection handler. The second only assigns a fulfillment handler; errors won’t be reported. The third
just assigns a rejection handler and doesn’t report success.

One quirk of the fetch() function is that the returned promise is fulfilled whenever it receives an
HTTP status, even 404 or 500. The promise is only rejected when the network request fails for some
reason. If you want to ensure that the status is in the 200-299 range, you can check the response.ok
property, as in this example:

1 const promise = fetch("books.json");

2

3 promise.then(response => {

4 if (response.ok) {

5 console.log("Request succeeded.");

6 } else {

7 console.error("Request failed.");

8 }

9 });

1. Promise Basics 7

Assigning Rejection Handlers with catch()

Promises also have a catch()method that behaves the same as then()when only a rejection handler
is passed. For example, the following catch() and then() calls are functionally equivalent:

1 const promise = fetch("books.json");

2

3 promise.catch(reason => {

4 // rejection

5 console.error(reason.message);

6 });

7

8 // is the same as:

9

10 promise.then(null, reason => {

11 // rejection

12 console.error(reason.message);

13 });

The intent behind then() and catch() is for you to use them in combination to clearly indicate how
a result is handled. This system is better than events and callbacks because it makes success or failure
completely clear. (Events tend not to fire when there’s an error, and in callbacks you must always
remember to check the error argument.) Just know that if you don’t attach a rejection handler to a
promise that is rejected, then the JavaScript runtime will output a message to the console, or throw
an error, or both (depending on the runtime).

Assigning Settlement Handlers with finally()

To go along with then() and catch() there is also finally(). The callback passed to finally()

(called a settlement handler) is called regardless of success or failure. Unlike the callbacks for then()
and catch(), finally() callbacks do not receive any arguments because it isn’t clear whether the
promise was fulfilled or rejected. Because the settlement handler is called both on fulfillment and
rejection, it is similar (but not the same; discussed further in Chapter 2) to passing the handler for
both fulfillment and rejection using then(). Here’s an example:

1. Promise Basics 8

1 const promise = fetch("books.json");

2

3 promise.finally(() => {

4 // no way to know if fulfilled or rejected

5 console.log("Settled");

6 });

7

8 // is similar to:

9

10 const callback = () => {

11 console.log("Settled");

12 };

13

14 promise.then(callback, callback);

As long as you don’t access the argument passed to callback, the behavior between these two
examples is the same. However, as with catch(), using finally() makes your intention clearer as
compared to then().

Settlement handlers are useful when you want to know that an operation has completed and you
don’t care about the result. As an example, you may want to display a loading indicator on a web
pagewhile a fetch() request is active and then hide it when the request is complete. It doesn’t matter
if the request was successful or not because the loading indicator should stop once the request is
complete. You might have code like this in your web application:

1 const appElement = document.getElementById("app");

2 const promise = fetch("books.json");

3

4 appElement.classList.add("loading");

5

6 promise.then(() => {

7 // handle success

8 });

9

10 promise.catch(() => {

11 // handle failure

12 });

13

14 promise.finally(() => {

15 appElement.classList.remove("loading");

16 });

Here, appElement represents the HTML element that wraps the entire application on the page. A
network request is initiated using fetch() and the CSS class "loading" is added to the HTML

1. Promise Basics 9

element (allowing you to change any styles as appropriate). When the network request completes,
promise is settled and the settlement handler removes the "loading" class from the HTML element
to reset the application state. You can still respond to success and failure using then() and catch()

while finally() solely handles the state change. Without finally(), you would need to remove the
"loading" class in both the fulfillment and rejection handlers.

The settlement handlers added with finally() do not prevent rejections from outputting an
error to the console or throwing an error. You must still add a rejection handler to prevent
the error from being thrown in that case.

Assigning Handlers to Settled Promises

A fulfillment, rejection, or settlement handler will still be executed even if it is added after the
promise is already settled. This allows you to add new fulfillment and rejection handlers at any
time and guarantee that they will be called. For example:

1 const promise = fetch("books.json");

2

3 // original fulfillment handler

4 promise.then(response => {

5 console.log(response.status);

6

7 // now add another

8 promise.then(response => {

9 console.log(response.statusText);

10 });

11 });

In this code, the fulfillment handler adds another fulfillment handler to the same promise. The
promise is already fulfilled at this point, so the new fulfillment handler is added to the microtask
queue and called when ready. Rejection and settlement handlers work the same way.

Handlers and Microtasks

JavaScript executed in the regular flow of a program is executed as a task, which is to say that
the JavaScript runtime has created a new execution context and executes the code completely,
exiting when finished. As an example, an onclick handler for a button in a web page is executed
as a task. When the button is clicked, a new task is created and the onclick handler is executed.
Once complete, the JavaScript runtime waits for the next interaction to execute more code. Promise
handlers, however, are executed in a different way.

1. Promise Basics 10

All promise handlers, whether fulfillment, rejection, or settlement, are executed asmicrotasks inside
of the JavaScript engine. Microtasks are queued and then executed immediately after the currently
running task has completed, before the JavaScript runtime becomes idle. Calling then(), catch(),
or finally() tells a promise to queue the specified microtasks once the promise is settled.

This is different than creating timers using setTimeout() or setInterval(), both of which create
new tasks to be executed at a later point in time. Queued promise handlers will always execute
before timers that are queued in the same task. You can test this for yourself by using the global
queueMicrotask() function, which is used to create microtasks outside of promises:

1 setTimeout(() => {

2 console.log("timer");

3

4 queueMicrotask(() => {

5 console.log("microtask in timer");

6 });

7

8 }, 0);

9

10 queueMicrotask(() => {

11 console.log("microtask");

12 });

In this code, a timer is created with a delay of 0 milliseconds, and inside of that timer a newmicrotask
is created. Also, a microtask is created outside of the timer. When this code executes, you will see
the following output to the console:

1 microtask

2 timer

3 microtask in timer

Even though the timer is set for a delay of 0 milliseconds, the microtask executes first, followed by
the timer, followed by the microtask inside of the timer.

The most important thing to remember about microtasks, including all promise handlers, is that
they are executed as soon as possible once a task is complete. This minimizes the amount of time
between a promise settling and the reaction to the settling, making promises suitable for situations
where runtime performance is important.

Creating New (Unsettled) Promises

New promises are created using the Promise constructor. This constructor accepts a single argument:
a function called the executor, which contains the code to initialize the promise. The executor is

1. Promise Basics 11

passed two functions named resolve() and reject() as arguments. You call the resolve() function
when the executor has finished successfully to signal that the promise is resolved or the reject()

function to indicate that the operation has failed.

Here’s an example using the old XMLHttpRequest browser API:

1 // Browser example

2

3 function requestURL(url) {

4 return new Promise((resolve, reject) => {

5

6 const xhr = new XMLHttpRequest();

7

8 // assign event handlers

9 xhr.addEventListener("load", () => {

10 resolve({

11 status: xhr.status,

12 text: xhr.responseText

13 });

14 });

15

16 xhr.addEventListener("error", error => {

17 reject(error);

18 });

19

20 // send the request

21 xhr.open("get", url);

22 xhr.send();

23 });

24 }

25

26 const promise = requestURL("books.json");

27

28 // listen for both fulfillment and rejection

29 promise.then(response => {

30 // fulfillment

31 console.log(response.status);

32 console.log(response.text);

33 }, reason => {

34 // rejection

35 console.error(reason.message);

36 });

In this example, the XMLHttpRequest call is wrapped in a promise. The load event indicates when a

1. Promise Basics 12

request has completed successfully, and so the promise executor calls resolve() in the event handler.
Similarly, the error event indicates when the request couldn’t be completed and so reject() is
called in that event handler. You can follow this same process (using resolve() and reject() in
event handlers) for converting event-based functionality into promise-based functionality.

One important aspect of executors is that they run immediately upon creation of the promise. In the
previous example, the xhr object is created, event handlers assigned, and the call initiated before
the promise is returned from requestURL(). When either resolve() or reject() is called inside the
executor, then the promise’s state and value are immediately set, but all promise handlers (being
microtasks) will not execute until the current script job completes. For example, consider what
happens if you call resolve() immediately inside an executor, as in this code:

1 const promise = new Promise((resolve, reject) => {

2 console.log("Executor");

3 resolve(42);

4 });

5

6 promise.then(result => {

7 console.log(result);

8 });

9

10 console.log("Hi!");

Here, the promise is resolved immediately without any delay, and then a fulfillment handler is added
using then() to output the result. Even though the promise is already resolved when the fulfillment
handler is added, the output will be as follows:

1 Executor

2 Hi!

3 42

The executor is run first, outputting "Executor" to the console. Next, the fulfillment handler is
assigned but is not executed immediately. Instead, a newmicrotask is created to run after the current
script job. That means console.log("Hi!") executes before the fulfillment handler, which outputs
42 after the rest of the script has completed.

A promise can only be resolved once, so if you call resolve() more than once inside of an
executor, every call after the first is ignored.

Executor Errors

If an error is thrown inside an executor, then the promise’s rejection handler is called. For example:

1. Promise Basics 13

1 const promise = new Promise((resolve, reject) => {

2 throw new Error("Uh oh!");

3 });

4

5 promise.catch(reason => {

6 console.log(reason.message); // "Uh oh!"

7 });

In this code, the executor intentionally throws an error. There is an implicit try-catch inside every
executor so that the error is caught and then passed to the rejection handler. The previous example
is equivalent to:

1 const promise = new Promise((resolve, reject) => {

2 try {

3 throw new Error("Uh oh!");

4 } catch (ex) {

5 reject(ex);

6 }

7 });

8

9 promise.catch(reason => {

10 console.log(reason.message); // "Uh oh!"

11 });

The executor handles catching any thrown errors to simplify this common use case, and just like
other rejections, the JavaScript engine throws an error and stops execution if no rejection handler
is assigned.

Creating Settled Promises

The Promise constructor is the best way to create unsettled promises due to the dynamic nature
of what the promise executor does. But if you want a promise to represent a previously computed
value, then it doesn’t make sense to create an executor that simply passes a value to the resolve()
or reject() function. Instead, there are two methods that create settled promises given a specific
value.

Using Promise.resolve()

The Promise.resolve()method accepts a single argument and returns a promise in the fulfilled state.
That means you don’t have to supply an executor if you know the value of the promise already. For
example:

1. Promise Basics 14

1 const promise = Promise.resolve(42);

2

3 promise.then(value => {

4 console.log(value); // 42

5 });

This code creates a fulfilled promise so the fulfillment handler receives 42 as value. As with other
examples in this chapter, the fulfillment handler is executed as a microtask after the current script
job completes. If a rejection handler were added to this promise, the rejection handler would never
be called because the promise will never be in the rejected state.

If you pass a promise to Promise.resolve(), then the function returns the same promise
that you passed in. For example:

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.resolve(promise1);

3

4 console.log(promise1 === promise2); // true

Using Promise.reject()

You can also create rejected promises by using the Promise.reject() method. This works like
Promise.resolve() except the created promise is in the rejected state, as follows:

1 const promise = Promise.reject(42);

2

3 promise.catch(reason => {

4 console.log(reason); // 42

5 });

Any additional rejection handlers added to this promise would be called, but fulfillment handlers
will not because the promise will never be in the fulfilled state.

If you pass a promise to either the Promise.resolve() or Promise.reject() methods, the
promise is returned without modification.

1. Promise Basics 15

Non-Promise Thenables

Both Promise.resolve() and Promise.reject() also accept non-promise thenables as arguments.
When passed a non-promise thenable, these methods create a new promise that is called after the
then() function.

A non-promise thenable is created when an object has a then() method that accepts a resolve and
a reject argument, like this:

1 const thenable = {

2 then(resolve, reject) {

3 resolve(42);

4 }

5 };

The thenable object in this example has no characteristics associated with a promise other than the
then() method. You can call Promise.resolve() to convert thenable into a fulfilled promise:

1 const thenable = {

2 then(resolve, reject) {

3 resolve(42);

4 }

5 };

6

7 const promise = Promise.resolve(thenable);

8 promise.then(value => {

9 console.log(value); // 42

10 });

In this example, Promise.resolve() calls thenable.then() so that a promise state can be determined.
The promise state for thenable is fulfilled because resolve(42) is called inside the then() method.
A new promise called promise is created in the fulfilled state with the value passed from thenable

(that is, 42), and the fulfillment handler for promise receives 42 as the value.

The same process can be used with Promise.resolve() to create a rejected promise from a thenable:

1. Promise Basics 16

1 const thenable = {

2 then(resolve, reject) {

3 reject(42);

4 }

5 };

6

7 const promise = Promise.resolve(thenable);

8 promise.catch(value => {

9 console.log(value); // 42

10 });

This example is similar to the last except that thenable is rejected. When thenable.then() executes,
a new promise is created in the rejected state with a value of 42. That value is then passed to the
rejection handler for promise.

Promise.resolve() and Promise.reject() work like this to allow you to easily work with non-
promise thenables. A lot of libraries used thenables prior to promises being introduced in 2015, so
the ability to convert thenables into formal promises is important for backwards compatibility with
previously existing libraries.When you’re unsure if an object is a promise, passing the object through
Promise.resolve() or Promise.reject() (depending on your anticipated result) is the best way to
find out because promises just pass through unchanged.

Summary

A promise is a placeholder for a value that may be provided later as the result of some asynchronous
operation. Instead of assigning an event handler or passing a callback into a function, you can use a
promise to represent the result of an operation.

Promises have three states: pending, fulfilled, and rejected. A promise starts in a pending (unsettled)
state and becomes fulfilled on a successful execution or rejected on a failure (fulfillment and rejection
are settled states). In either case, handlers can be added to indicate when a promise is settled. The
then()method allows you to assign a fulfillment and rejection handler; the catch()method allows
you to assign only a rejection handler; the finally() method allows you to assign a settlement
handler that is always called regardless of the outcome. All promise handlers are run as microtasks
so they will not execute until the current script job is complete.

You can create new unsettled promises using the Promise constructor, which accepts an executor
function as its only argument. The executor function is passed resolve() and reject() functions
that you use to indicate the success or failure of the promise. The executor runs immediately upon
creation of the promise, unlike handlers, which are run as microtasks. Any errors thrown in an
executor are automatically caught and passed to reject().

It’s possible to create settled promises using Promise.resolve() for fulfilled promises and Promise.reject()
for rejected promises. Each method will wrap its argument in a promise (if it’s not a promise and

1. Promise Basics 17

not a non-promise thenable), create a new promise (for non-promise thenables), or pass through any
existing promise. These methods are helpful when you are unsure if the value is a promise but want
it to behave like one.

While creating single promises is a useful and effective way to work with asynchronous operations
in JavaScript, promises allow interesting composition patterns when chained together. In the next
chapter, you’ll learn how promise handlers work to create promise chains and why that’s a valuable
capability.

2. Chaining Promises
To this point, promises may seem like little more than an incremental improvement over using
some combination of a callback and the setTimeout() function, but there is much more to promises
than meets the eye. More specifically, there are a number of ways to chain promises together to
accomplish more complex asynchronous behavior.

Each call to then(), catch(), or finally() actually creates and returns another promise. This second
promise is settled only once the first has been fulfilled or rejected. Consider this example:

1 const promise = Promise.resolve(42);

2

3 promise.then(value => {

4 console.log(value);

5 }).then(() => {

6 console.log("Finished");

7 });

The code outputs:

1 42

2 Finished

The call to promise.then() returns a second promise on which then() is called. The second then()

fulfillment handler is only called after the first promise has been resolved. If you unchain this
example, it looks like this:

1 const promise1 = Promise.resolve(42);

2

3 const promise2 = promise1.then(value => {

4 console.log(value);

5 });

6

7 promise2.then(() => {

8 console.log("Finished");

9 });

In this unchained version of the code, the result of promise1.then() is stored in promise2, and then
promise2.then() is called to add the final fulfillment handler. The call to promise2.then() also
returns a promise. This example just doesn’t use that promise.

2. Chaining Promises 19

Catching Errors

Promise chaining allows you to catch errors that may occur in a fulfillment or rejection handler
from a previous promise. For example:

1 const promise = Promise.resolve(42);

2

3 promise.then(value => {

4 throw new Error("Oops!");

5 }).catch(reason => {

6 console.error(reason.message); // "Oops!"

7 });

In this code, the fulfillment handler for promise throws an error. The chained call to the catch()

method, which is on a second promise, is able to receive that error through its rejection handler. The
same is true if a rejection handler throws an error:

1 const promise = new Promise((resolve, reject) => {

2 throw new Error("Uh oh!");

3 });

4

5 promise.catch(reason => {

6 console.log(reason.message); // "Uh oh!"

7 throw new Error("Oops!");

8 }).catch(reason => {

9 console.error(reason.message); // "Oops!"

10 });

Here, the executor throws an error that triggers the promise’s rejection handler. That handler then
throws another error that is caught by the second promise’s rejection handler. The chained promise
calls are aware of errors in other promises in the chain.

You can use this ability to catch errors through a promise chain to effectively act like a try-catch

statement. Consider using fetch() to retrieve some data and wanting to catch any errors that occur:

2. Chaining Promises 20

1 const promise = fetch("books.json");

2

3 promise.then(response => {

4 console.log(response.status);

5 }).catch(reason => {

6 console.error(reason.message);

7 });

This example will output the response status from the fetch() call if it succeeds and will output
the error message if the call fails. You can take this a step further and handle status codes outside
of the 200-299 range as errors by checking the response.ok property (discussed in Chapter 1) and
throwing an error if it is false, as in this example:

1 const promise = fetch("books.json");

2

3 promise.then(response => {

4 if (response.ok) {

5 console.log(response.status);

6 } else {

7 throw new Error(`Unexpected status code: ${response.status} ${response.statu\

8 sText}`);

9 }

10 }).catch(reason => {

11 console.error(reason.message);

12 });

The chained catch() call in this example creates a rejection handler that catches both errors returned
by fetch() and also any errors thrown in the fulfillment handler. So instead of needing two different
handles for catching the two different types of errors, you can use one to handle all of the errors
that may occur in the chain.

Always have a rejection handler at the end of a promise chain to ensure that you can properly
handle any errors that may occur.

Using finally() in Promise Chains

The finally() method behaves differently than either then() or catch() in that it copies the state
and value of the previous promise into its returned promise. That means if the original promise is
fulfilled with a value, then finally() returns a promise that is fulfilled with the same value. For
example:

2. Chaining Promises 21

1 const promise = Promise.resolve(42);

2

3 promise.finally(() => {

4 console.log("Finally called.");

5 }).then(value => {

6 console.log(value); // 42

7 });

Here, the settlement handler can’t receive the fulfilled value from promise, so that value is copied
to a new promise that is returned from the method call. The new promise is fulfilled with the value
42 (copied from promise) so the fulfillment handler receives 42 as an argument. Keep in mind that
even though the returned promise and promise have the same value, they are not the same object,
as you can see in this example:

1 const promise1 = Promise.resolve(42);

2

3 const promise2 = promise1.finally(() => {

4 console.log("Finally called.");

5 });

6

7 promise2.then(value => {

8 console.log(value); // 42

9 });

10

11 console.log(promise1 === promise2); // false

In this code, the returned value from promise1.finally() is stored in promise2, at which point
you can determine that it is not the same object as promise1. The call to finally() always copies
the state and value from the original promise. That also means that when finally() is called on a
rejected promise, it in turn returns a rejected promise, as in this example:

1 const promise = Promise.reject(43);

2

3 promise.finally(() => {

4 console.log("Finally called.");

5 }).catch(reason => {

6 console.error(reason); // 43

7 });

The promise promise in this example is rejected with a reason of 43. Once again, the settlement
handler cannot access this information as it is not passed in as an argument, so instead it returns a
new promise that is rejected for the same reason. You can then use catch() to retrieve the reason.

2. Chaining Promises 22

The one exception to how finally() works is when an error is thrown inside of the settlement
handler or a rejected promise is returned. In this one case, the returned promise from finally()

does not maintain the state and value from the original promise, and instead is rejected with the
thrown error as the reason. Here’s an example:

1 const promise1 = Promise.reject(43);

2

3 promise1.finally(() => {

4 throw 44;

5 }).catch(reason => {

6 console.error(reason); // 44

7 });

8

9 const promise2 = Promise.reject(43);

10

11 promise2.finally(() => {

12 return Promise.reject(44);

13 }).catch(reason => {

14 console.error(reason); // 44

15 });

Because the settlement handlers throw 44 or return Promise.reject(44) in this example, the
returned promise is rejected with the value of 44 and that is output to the console instead of 43.
The state and value of the original promise are lost as a consequence of the error being thrown in
the settlement handler.

In Chapter 1, you saw how a settlement handler can be used to toggle the loading state of an
application based on a call to fetch(). Rewriting that example using promise chains, and mixing in
some error handling from earlier in this chapter, here’s a complete example:

1 const appElement = document.getElementById("app");

2 const promise = fetch("books.json");

3

4 appElement.classList.add("loading");

5

6 promise.then(response => {

7 if (response.ok) {

8 console.log(response.status);

9 } else {

10 throw new Error(`Unexpected status code: ${response.status} ${response.statu\

11 sText}`);

12 }

13 }).finally(() => {

2. Chaining Promises 23

14 appElement.classList.remove("loading");

15 }).catch(reason => {

16 console.error(reason.message);

17 });

Unlike a try-catch statement, you don’t want finally() to be the last part of the chain just in case
it throws an error. So then() is called first, to handle the response from fetch(), then finally() is
added to the chain to trigger the UI change, and last catch() adds the error handler for the entire
chain. This is where settlement handlers passing along the state of the previous promise is helpful:
if the fulfillment handler ends up throwing an error, the settlement handler will pass that rejection
state along so the rejection handler can access it.

Returning Values in Promise Chains

Another important aspect of promise chains is the ability to pass data from one promise to the next.
You’ve already seen that a value passed to the resolve() handler inside an executor is passed to the
fulfillment handler for that promise. You can continue passing data along a chain by specifying a
return value from the fulfillment handler. For example:

1 const promise = Promise.resolve(42);

2

3 promise.then(value => {

4 console.log(value); // 42

5 return value + 1;

6 }).then(value => {

7 console.log(value); // 43

8 });

The fulfillment handler for promise returns value + 1 when executed. Since value is 42 (from the
executor), the fulfillment handler returns 43. That value is then passed to the fulfillment handler of
the second promise, which outputs it to the console.

You could do the same thing with the rejection handler. When a rejection handler is called, it may
return a value. If it does, that value is used to fulfill the next promise in the chain, like this:

2. Chaining Promises 24

1 const promise = Promise.reject(42);

2

3 promise.catch(value => {

4 // rejection handler

5 console.error(value); // 42

6 return value + 1;

7 }).then(value => {

8 // fulfillment handler

9 console.log(value); // 43

10 });

Here, a rejected promise is created with a value of 42. That value is passed into the rejection handler
for the promise, where value + 1 is returned. Even though this return value is coming from a
rejection handler, it is still used in the fulfillment handler of the next promise in the chain. The
failure of one promise can allow recovery of the entire chain if necessary.

Using finally(), however, results in a different behavior. Any value returned from a settlement
handler is ignored so that you can access the original promise’s value. Here’s an example:

1 const promise = Promise.resolve(42);

2

3 promise.finally(() => {

4 // settlement handler

5 return 43; // ignored!

6 }).then(value => {

7 // fulfillment handler

8 console.log(value); // 42

9 });

The value passed to the fulfillment handler is 42 and not 43. The return statement in the settlement
handler is ignored so that the original value can be retrieved using then(). This is one of the
consequences of finally() returning a promise whose state and value are copied from the original.

Returning Promises in Promise Chains

Returning primitive values from promise handlers allows passing of data between promises, but
what if you return an object? If the object is a promise, then there’s an extra step that’s taken to
determine how to proceed. Consider the following example:

2. Chaining Promises 25

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.resolve(43);

3

4 promise1.then(value => {

5 console.log(value); // 42

6 return promise2;

7 }).then(value => {

8 console.log(value); // 43

9 });

In this code, promise1 resolves to 42. The fulfillment handler for promise1 returns p2, a promise
already in the resolved state. The second fulfillment handler is called because promise2 has been
fulfilled. If promise2 were rejected, a rejection handler (if present) would be called instead of the
second fulfillment handler.

The important thing to recognize about this pattern is that the second fulfillment handler is not
added to promise2, but rather to a third promise, making the previous example equivalent to this:

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.resolve(43);

3

4 const promise3 = promise1.then(value => {

5 console.log(value); // 42

6 return promise2;

7 });

8

9 promise3.then(value => {

10 console.log(value); // 43

11 });

Here, it’s clear that the second fulfillment handler is attached to promise3 rather than promise2. This
is a subtle but important distinction, as the second fulfillment handler will not be called if promise2
is rejected. For instance:

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.reject(43);

3

4 promise1.then(value => {

5 console.log(value); // 42

6 return promise2;

7 }).then(value => {

8 console.log(value); // never called

9 });

2. Chaining Promises 26

In this example, the second fulfillment handler is never called because promise2 is rejected. You
could, however, attach a rejection handler instead:

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.reject(43);

3

4 promise1.then(value => {

5 console.log(value); // 42

6 return promise2;

7 }).catch(value => {

8 console.error(value); // 43

9 });

Here, the rejection handler is called as a result of promise2 being rejected. The rejected value 43

from promise2 is passed into that rejection handler.

Returning a promise from a fulfillment handler is helpful when an operation requires more than
one promise to execute to completion. For example, fetch() requires a second promise to read the
body of a response. To read a JSON body, you’ll need to use response.json(), which returns another
promise. Here’s how it looks without using promise chaining:

1 const promise1 = fetch("books.json");

2

3 promise1.then(response => {

4

5 promise2 = response.json();

6 promise2.then(payload => {

7 console.log(payload);

8 }).catch(reason => {

9 console.error(reason.message);

10 });

11

12 }).catch(reason => {

13 console.error(reason.message);

14 });

This code requires two different rejection handlers to catch the potential errors at two different steps
of the process. Returning the second promise from the first fulfillment handler simplifies the code:

1 const promise = fetch("books.json");

2

3 promise.then(response => {

4 return response.json();

5 }).then(payload => {

2. Chaining Promises 27

6 console.log(payload);

7 }).catch(reason => {

8 console.error(reason.message);

9 });

Here, the first fulfillment handler is called when a response is received and then returns a promise
to read the response body as JSON. The second fulfillment handler is called when the body has been
read and the payload is ready to be used. You need only one rejection handler at the end of the
promise chain to catch errors that occur along the way.

Returning a promise from a settlement handler using finally() also exhibits some different behavior
than using then() or catch(). First, if you return a fulfilled promise from a settlement handler, then
that promise is ignored in favor of the value from the original promise, as in this example:

1 const promise = Promise.resolve(42);

2

3 promise.finally(() => {

4 return Promise.resolve(44);

5 }).then(value => {

6 console.log(value); // 42

7 });

In this example, the settlement handler returns a promise that is fulfilled with 44, but the returned
promise is fulfilled with the original promise’s value, which is 42.

However, if you return a rejected promise from a settlement handler, then the returned promise
adopts that reason and the returned promise is rejected, like this:

1 const promise = Promise.resolve(42);

2

3 promise.finally(() => {

4 return Promise.reject(43);

5 }).catch(reason => {

6 console.error(reason); // 43

7 });

This holds true even if the original promise is rejected, as in this example:

2. Chaining Promises 28

1 const promise = Promise.reject(43);

2

3 promise.finally(() => {

4 return Promise.reject(45);

5 }).catch(reason => {

6 console.log(reason); // 45

7 });

Returning a rejected promise from a settlement handler is functionally equivalent to throwing an
error: the returned promise is rejected with the specified reason.

Returning promises from fulfillment or rejection handlers doesn’t change when the promise
executors are executed. The first defined promise will run its executor first; then the second promise
executor will run, and so on. Returning promises simply allows you to define additional responses
to the promise results. You defer the execution of fulfillment handlers by creating a new promise
within a fulfillment handler. For example:

1 const p1 = Promise.resolve(42);

2

3 p1.then(value => {

4 console.log(value); // 42

5

6 // create a new promise

7 const p2 = new Promise((resolve, reject) => {

8 setTimeout(() => {

9 resolve(43);

10 }, 500);

11 });

12

13 return p2;

14 }).then(value => {

15 console.log(value); // 43

16 });

In this example, a new promise is created within the fulfillment handler for p1. That means the
second fulfillment handler won’t execute until after p2 is fulfilled. The executor for p2 is delayed
by 500 milliseconds using setTimeout(), but more realistically you might make a network or file
system request. This pattern is useful when you want to wait until a previous promise has been
settled before starting a new asynchronous operation.

2. Chaining Promises 29

Summary

Multiple promises can be chained together in a variety of ways to pass information between them.
Each call to then(), catch(), and finally() creates and returns a new promise that is resolved when
the preceding promise is settled. If the promise handler returns a value, then that value becomes the
value of the newly created promise from then() and catch() (finally() ignores this value); if the
promise handler throws an error, then the error is caught and the returned newly created promise
is rejected using that error as the reason.

When one promise is rejected in a chain, the promises created from other chained handlers are also
rejected until the end of the chain is reached. Knowing this, it’s recommended to attach a rejection
handler at the end of each promise chain to ensure that errors are handled correctly. Failing to catch
a promise rejection will result in a message being output to the console, an error being thrown, or
both (depending on the runtime environment).

You can return promises from handlers, and in that case, the promise returned from the call to
then() and catch() will settle to match the settlement state and value of the promise returned
from the handler (fulfilled promises returned from finally() are ignored while rejected promises
are honored). You can use this to your advantage by delaying some operations until a promise is
fulfilled, then initiating and returning a second promise to continue using the same promise chain.

This chapter explored how to chain multiple promises together so they act more like one promise.
In this next chapter, you’ll learn how to work with multiple promises acting in parallel.

3. Working with Multiple Promises
Up to this point, each example in this book has dealt with responding to one promise at a time.
Sometimes, however, you’ll want to monitor the progress of multiple promises in order to determine
the next action. JavaScript provides several methods that monitor multiple promises and respond to
them in slightly different ways. All of the methods discussed in this chapter allow multiple promises
to be executed in parallel and then responded to as a group rather than individually.

The Promise.all() Method

The Promise.all() method accepts a single argument, which is an iterable (such as an array) of
promises to monitor, and returns a promise that is resolved only when every promise in the iterable
is resolved. The returned promise is fulfilled when every promise in the iterable is fulfilled, as in this
example:

1 let promise1 = Promise.resolve(42);

2

3 let promise2 = new Promise((resolve, reject) => {

4 resolve(43);

5 });

6

7 let promise3 = new Promise((resolve, reject) => {

8 setTimeout(() => {

9 resolve(44);

10 }, 100);

11 });

12

13 let promise4 = Promise.all([promise1, promise2, promise3]);

14

15 promise4.then(value => {

16 console.log(Array.isArray(value)); // true

17 console.log(value[0]); // 42

18 console.log(value[1]); // 43

19 console.log(value[2]); // 44

20 });

Each promise here resolves with a number. The call to Promise.all() creates promise promise4,
which is ultimately fulfilled when promises promise1, promise2, and promise3 are fulfilled. The

3. Working with Multiple Promises 31

result passed to the fulfillment handler for promise4 is an array containing each resolved value: 42,
43, and 44. The values are stored in the order the promises were passed to Promise.all(), so you
can match promise results to the promises that resolved to them.

If any promise passed to Promise.all() is rejected, the returned promise is immediately rejected
without waiting for the other promises to complete:

1 let promise1 = Promise.resolve(42);

2

3 let promise2 = Promise.reject(43);

4

5 let promise3 = new Promise((resolve, reject) => {

6 setTimeout(() => {

7 resolve(44);

8 }, 100);

9 });

10

11 let promise4 = Promise.all([promise1, promise2, promise3]);

12

13 promise4.catch(reason => {

14 console.log(Array.isArray(reason)); // false

15 console.log(reason); // 43

16 });

In this example, the second promise (promise2) is rejected with a value of 43. The rejection handler
for promise4 is called immediately without waiting for the first promise (promise1) or third promise
(promise3) to finish executing. (They do still finish executing; promise4 just doesn’t wait.)

The rejection handler always receives a single value rather than an array, and the value is the
rejection value from the promise that was rejected. In this case, the rejection handler is passed
43 to reflect the rejection from promise2.

Any non-promise value in the iterable argument is passed to Promise.resolve() to convert
it into a promise.

When to Use Promise.all()

You’ll want to use Promise.all() in any situation where you are waiting for multiple promises to
fulfill, and any one failure should cause the entire operation to fail. Here are some common use cases
for Promise.all().

3. Working with Multiple Promises 32

Processing Multiple Files Together

When using a server-side JavaScript runtime such as Node.js or Deno, you may need to read from
multiple files to work with data contained inside. In this situation, it’s most efficient to read files in
parallel and wait until they’ve all been read before proceeding to process the data you’ve retrieved.
Here’s an example that works in Node.js:

1 import { readFile } from "node:fs/promises";

2

3 function readFiles(filenames) {

4 return Promise.all(

5 filenames.map(filename => readFile(filename, "utf8"))

6);

7 }

8

9 readFiles([

10 "file1.json",

11 "file2.json"

12]).then(fileContents => {

13

14 // parse JSON data

15 const data = fileContents.map(

16 fileContent => JSON.parse(fileContent)

17);

18

19 // process as necessary

20 console.log(data);

21

22 }).catch(reason => {

23 console.error(reason.message);

24 });

This example uses the Node.js promises-based filesystem API to read multiple files in parallel. The
readFiles() function accepts an array of filenames to read and thenmaps each filename to a promise
created by the imported readFile() function. The file is read as text (as indicated by the "utf8"

encoding passed as the second argument), and the results are available in the fulfillment handler as
the fileContents array, which contains the text of each filename. From that point, the file contents
are parsed as JSON into the data array and then passed to the processData() function. This is a
common way to process data across multiple files because if any one file cannot be read or parsed,
then the operation cannot be completed correctly and should be stopped.

3. Working with Multiple Promises 33

Calling Multiple Dependent Web Service APIs

Another common use case for Promise.all() is when calling multiple web service APIs. This is
especially common with REST APIs where each type of data associated with an entity may have
its own endpoints. For example, consider an application where each user has both blog posts and
albums, and you may need to gather all of that information on the user’s profile. The code might
look like this:

1 const API_BASE = "https://jsonplaceholder.typicode.com";

2

3 function fetchUserData(userId) {

4

5 const urls = [

6 `${API_BASE}/users/${userId}/posts`,

7 `${API_BASE}/users/${userId}/albums`

8];

9

10 return Promise.all(urls.map(url => fetch(url)));

11 }

12

13 fetchUserData(1).then(responses => {

14 return Promise.all(

15 responses.map(

16 response => {

17 if (response.ok) {

18 return response.json();

19 } else {

20 return Promise.reject(

21 new Error(`Unexpected status code: ${response.status} ${resp\

22 onse.statusText} for ${response.url}`)

23);

24 }

25 }

26)

27);

28 }).then(([posts, albums]) => {

29

30 // process your data as necessary

31 console.log(posts);

32 console.log(albums);

33

34 }).catch(reason => console.error(reason.message));

3. Working with Multiple Promises 34

This example uses the JSONPlaceholder¹ service, which is a free fake API for testing and prototyping.
Given a particular user ID, JSONPlaceholder will generate fake data. In this case, the code is using
the /posts and /albums endpoints for each user. The fetchUserData() function accepts a user ID
and generates the URLs to call. Then the URLs are mapped to the promise returned by each fetch()

call. When the responses are retrieved, another Promise.all() call is used to map each response to
another promise, either the JSON body if the response was in the 200-299 range or a rejected promise
otherwise (which will short-circuit the entire operation and call the rejection handler). In the last
settlement handler, the posts and albums data is available to be processed.

Creating Artificial Delays

A less common scenario for Promise.all() is when you want to delay something from happening
too quickly. This is more likely to happen in a browser rather than on the server-side, where you
sometimes need a slight delay between a user action and the response. For example, you may want
to display a loading indicator when fetching data from the server, but if the response is too fast, the
user may not see the loading spinner and therefore not know that the data on the screen is the most
recent. In such a situation, you can introduce an artificial delay, like this:

1 const API_BASE = "https://jsonplaceholder.typicode.com";

2 const appElement = document.getElementById("app");

3

4 function delay(milliseconds) {

5 return new Promise(resolve => {

6 setTimeout(() => {

7 resolve();

8 }, milliseconds);

9 });

10 }

11

12 function fetchUserData(userId) {

13

14 appElement.classList.add("loading");

15

16 const urls = [

17 `${API_BASE}/users/${userId}/posts`,

18 `${API_BASE}/users/${userId}/albums`

19];

20

21 return Promise.all([

22 ...urls.map(url => fetch(url)),

23 delay(1500)

24]).then(results => {

¹https://jsonplaceholder.typicode.com/

3. Working with Multiple Promises 35

25 // strip off the undefined result from delay()

26 return results.slice(0, results.length - 1);

27 });

28 }

29

30 fetchUserData(1).then(responses => {

31 return Promise.all(

32 responses.map(

33 response => {

34 if (response.ok) {

35 return response.json();

36 } else {

37 return Promise.reject(

38 new Error(`Unexpected status code: ${response.status} ${resp\

39 onse.statusText} for ${response.url}`)

40);

41 }

42 }

43)

44);

45 }).then(([posts, albums]) => {

46

47 // process your data as necessary

48 console.log(posts);

49 console.log(albums);

50

51 }).finally(() => {

52 appElement.classList.remove("loading");

53 }).catch(reason => console.error(reason.message));

This code builds on the preceding example by introducing a delay into each fetch() call. The delay()
function returns a promise that resolves after a specified number of milliseconds have passed. It does
so by using the native setTimeout() function and passing a callback function that calls resolve().
Note that there is no need to pass any value to resolve() in this situation because there is no relevant
data.

You could also pass resolve directly as the first argument to setTimeout(); however, some
JavaScript runtimes pass an argument to the timeout callback. For best compatibility across
runtimes, it’s best to call resolve() from inside of another function.

The fetchUserData() function initiates the web service requests for the specified user ID. As in the
example from the previous section, Promise.all() is used to monitor multiple fetch() requests, but

3. Working with Multiple Promises 36

in this example, there is also a call to delay() included in the array passed to Promise.all(). When
the returned promise is fulfilled, the fulfillment handler receives an array of all results, including
undefined as the last array element. Before returning from fetchUserData(), that last element is
removed so that the code calling fetchUserData() doesn’t need to be aware of the delay() call at
all. The CSS class loading is added to the application element in the DOM to indicate that data is
being retrieved and is later removed by a settlement handler when a response is received.

You’ve just learned use cases where using Promise.all() is the best solution. But what if you want
your operation to continue even if one promise is rejected? That’s where Promise.allSettled() is
the better choice.

The Promise.allSettled() Method

The Promise.allSettled() method is a slight variation of Promise.all() where the method waits
until all promises in the specified iterable are settled, regardless of whether they are fulfilled or
rejected. The return value of Promise.allSettled() is always a promise that is fulfilled with an
array of result objects.

The result object for a fulfilled promise has two properties:

• status - always set to the string fulfilled

• value - the fulfillment value of the promise

For a rejected promise, there are also two properties on the result object:

• status - always set to the string rejected

• reason - the rejection value of the promise

You can use the returned array of result objects to determine the result of each individual promise.

1 let promise1 = Promise.resolve(42);

2

3 let promise2 = Promise.reject(43);

4

5 let promise3 = new Promise((resolve, reject) => {

6 setTimeout(() => {

7 resolve(44);

8 }, 100);

9 });

10

11 let promise4 = Promise.allSettled([promise1, promise2, promise3]);

12

3. Working with Multiple Promises 37

13 promise4.then(results => {

14 console.log(Array.isArray(results)); // true

15

16 console.log(results[0].status); // "fulfilled"

17 console.log(results[0].value); // 42

18

19 console.log(results[1].status); // "rejected"

20 console.log(results[1].reason); // 43

21

22 console.log(results[2].status); // "fulfilled"

23 console.log(results[2].value); // 44

24 });

Even though the second promise (promise2) is a rejected promise, the call to Promise.allSettled()

returns a fulfilled promise with an array of result objects. You can then look through the result
objects to determine the outcome of each promise.

When to Use Promise.allSettled()

The Promise.allSettled() method can be used in a lot of the same situations as Promise.all();
however, it is best suited for when you want to ignore rejections, handle rejections differently, or
allow partial success. Here are some common use cases for Promise.allSettled().

Processing Multiple Files Separately

When discussing Promise.all(), you saw an example of working on multiple files that were
dependent on one another to succeed. There are also some cases where working on multiple files
separately means you don’t need to stop the entire operation if one fails; you go ahead and complete
the successful operations and then log the failed ones to retry later. Here’s an example in Node.js:

1 import { readFile, writeFile } from "node:fs/promises";

2

3 // or any operation on the files

4 function transformText(text) {

5 return text.split("").reverse().join("");

6 }

7

8 function transformFiles(filenames) {

9 return Promise.allSettled(

10 filenames.map(filename =>

11 readFile(filename, "utf8")

12 .then(text => transformText(text))

3. Working with Multiple Promises 38

13 .then(newText => writeFile(filename, newText))

14 .catch(reason => {

15 reason.filename = filename;

16 return Promise.reject(reason);

17 })

18)

19);

20 }

21

22 transformFiles([

23 "file1.txt",

24 "file2.txt"

25]).then(results => {

26

27 // get failed results

28 const failedResults = results.filter(

29 result => result.status === "rejected"

30);

31

32 if (failedResults.length) {

33 console.error("The following files were not transformed successfully:");

34 console.error("");

35

36 failedResults.forEach(failedResult => {

37 console.error(failedResult.reason.filename);

38 console.error(failedResult.reason.message);

39 console.error("");

40 });

41 } else {

42 console.log("All files transformed successfully.");

43 }

44

45 });

This example reads in a series of files, reverses the order of the text in the files, and then writes that
text back to the original files (you can, of course, replace transformText() with whatever operation
you would prefer). The transformFiles() function accepts an array of filenames and reads the
contents of the file, transforms the text, and writes the transformed text back to the file. The promise
chain represents each step in the process, and the rejection handler adds a filename property to any
rejection reason to make it easier to interpret the results after the fact.

When the operation on all of the files is completed, the results are filtered to find any files where the
transform did not complete successfully and then outputs those results to the console. In a production

3. Working with Multiple Promises 39

system you would likely feed the failed results into a monitoring system or a queue to try the
transformation again.

Calling Multiple Independent Web Service APIs

Another example from the Promise.all() section was calling multiple web service APIs where you
wanted all of the requests to succeed. If you don’t need all of the requests to succeed, then you can
use Promise.allSettled() instead. Going back to that previous example, if it’s possible to display
the user profile page, even if some of the data is missing, then use Promise.allSettled() instead of
Promise.all() to avoid showing an error to the user. For example:

1 const API_BASE = "https://jsonplaceholder.typicode.com";

2

3 function fetchUserData(userId) {

4

5 const urls = [

6 `${API_BASE}/users/${userId}/posts`,

7 `${API_BASE}/users/${userId}/albums`,

8 `${API_BASE}/users/${userId}/extras`

9];

10

11 return Promise.allSettled(urls.map(url => fetch(url)))

12 .then(results => results.map(result => result.value));

13 }

14

15 fetchUserData(1).then(responses => {

16 return Promise.all(

17 responses.map(

18 response => {

19 if (response?.ok) {

20 return response.json();

21 }

22 }

23)

24);

25 }).then(([posts, albums, extras]) => {

26

27 // process your data as necessary

28 if (posts) {

29 console.log("Posts");

30 console.log(posts);

31 }

32

3. Working with Multiple Promises 40

33 if (albums) {

34 console.log("Albums");

35 console.log(albums);

36 }

37

38 if (extras) {

39 console.log("Extras");

40 console.log(extras);

41 }

42

43 }).catch(reason => console.error(reason.message));

In this version of the example, the fetchUserData() function uses Promise.allSettled() instead
of Promise.all() to ensure that rejections can be ignored. This example also calls a third endpoint,
/users/{userId}/extras, which doesn’t exist and will return a 404 (for demonstration purposes).
Once all requests have completed, a fulfillment handler maps each result to its value property, which
ensures that any rejected promises are mapped to undefined and fulfilled promises are mapped to
the response object returned from fetch().

Because response may be undefined, you need to check that response is a truthy before checking
the ok property. The JSON body of each valid response is then read, and the last fulfillment handler
reads that data. There is no guarantee that each of the requested data will be there (extras will be
undefined in this example) so you need to check that each value is present before processing it.

Waiting for Animations to Finish

In a web page, elements can be animated in a number of different ways simultaneously. You could,
for instance, animate the location of an element up from the bottom of the page while also animating
the width and height to grow the element into view. It’s helpful in these situations to wait for all
animations to complete before making the next modification to the element or page. In his article,
Building a toast component, Adam Argyle explained a basic way to track when the animations of a
DOM element are complete. I’ve rewritten the code for clarity here:

1 function waitForAnimations(element) {

2 return Promise.allSettled(

3 element.getAnimations().map(animation => animation.finished)

4);

5 }

6

7 const toasterElement = document.getElementById("toaster");

8 waitForAnimations(toasterElement)

9 .then(() => console.log("Toaster is done."));

3. Working with Multiple Promises 41

In this case, you don’t really care if any of the animations fail along the way, nor do you care about
receiving any fulfilled values from the animations, so Promise.allSettled() is a more appropriate
option than Promise.all(). The getAnimations() method returns an array of animation objects,
each of which has a finished property containing a promise that is resolved when the animation is
complete. By passing each of these promises into Promise.allSettled(), you will be notified when
all animations are complete. Because Promise.allSettled() never returns a rejected promise, you
can just attach a fulfillment handler and not be worried about any uncaught rejection errors.

The Promise.any() Method

The Promise.any()method also accepts an iterable of promises and returns a fulfilled promise when
any of the passed-in promises are fulfilled. The operation short-circuits as soon as one of the promises
is fulfilled. (This is the opposite of Promise.all(), where the operation short-circuits as soon as one
promise is rejected.) Here’s an example:

1 let promise1 = Promise.reject(43);

2

3 let promise2 = Promise.resolve(42);

4

5 let promise3 = new Promise((resolve, reject) => {

6 setTimeout(() => {

7 resolve(44);

8 }, 100);

9 });

10

11 let promise4 = Promise.any([promise1, promise2, promise3]);

12

13 promise4.then(value => console.log(value)); // 42

Even though the first promise (promise1) in this example is rejected, the call to Promise.any()

succeeds because the second promise (promise2) is fulfilled. The result of the third promise
(promise3) is discarded.

If all of the promises passed to Promise.any() are rejected, then the returned promise is rejected
with an AggregateError. An AggregateError is an error that represents multiple errors stored in an
errors property. For example:

3. Working with Multiple Promises 42

1 let promise1 = Promise.reject(43);

2

3 let promise2 = new Promise((resolve, reject) => {

4 reject(44);

5 });

6

7 let promise3 = new Promise((resolve, reject) => {

8 setTimeout(() => {

9 reject(45);

10 }, 100);

11 });

12

13 let promise4 = Promise.any([promise1, promise2, promise3]);

14

15 promise4.catch(reason => {

16 // Runtime dependent error message

17 console.log(reason.message);

18

19 // output rejection values

20 console.log(reason.errors[0]); // 43

21 console.log(reason.errors[1]); // 44

22 console.log(reason.errors[2]); // 45

23 });

Here, Promise.any() receives promises that are not fulfilled, and so the returned promise is rejected
with an AggregateError. You can inspect the errors property, which is an array, to retrieve the
rejection values from each promise.

When to Use Promise.any()

The Promise.any() method is best used in situations where you want any one of the promises to
fulfill and you don’t care how many others reject unless they all reject. Here are some situations
where you might want to use Promise.any().

Executing Hedged Requests

As defined in The Tail at Scale², a hedged request is one where the client makes requests to multiple
servers and accepts the response from the first that replies. This is helpful in situations where the
client needs the lowest latency possible, and there are server resources devoted to managing the
extra load and deduplicating responses. Here’s an example:

²https://www.barroso.org/publications/TheTailAtScale.pdf

3. Working with Multiple Promises 43

1 const HOSTS = [

2 "api1.example.com",

3 "api2.example.com"

4];

5

6 function hedgedFetch(endpoint) {

7 return Promise.any(

8 HOSTS.map(hostname => fetch(`https://${hostname}${endpoint}`))

9);

10 }

11

12 hedgedFetch("/transactions")

13 .then(transactions => console.log(transations))

14 .catch(reason => console.error(reason.message));

This example keeps an array of hosts that should be called for each hedged request. The hedgedFetch()
function creates an array of fetch() requests based on those hostnames and passes that array
to Promise.any(). To the consumer of hedgedFetch(), it looks as if just one request is made
even though multiple are happening behind the scenes. This allows the consumer to use just one
fulfillment handler and one rejection handler to handle the result. If any one of the requests fails,
the consumer is never aware; the rejection handler is only called if all requests fail.

Using the Fastest Response in a Service Worker

Web pages that use service workers often have their choice of where to load data from: the network
or from the cache. In some cases, a network request might actually be faster than loading from cache,
and so you may want to use Promise.any() to choose the faster of the responses. Here’s some code
that illustrates this pattern inside of a service worker:

1 self.addEventListener("fetch", event => {

2

3 // get cached response

4 const cachedResponse = caches.match(event.request);

5

6 // fetch new response

7 const fetchedResponse = fetch(event.request.url);

8

9 // respond with the best option

10 event.respondWith(

11 Promise.any([

12 fetchedResponse.catch(() => cachedResponse),

13 cachedResponse,

14])

3. Working with Multiple Promises 44

15 .then(response => response ?? fetchedResponse)

16 .catch(() => {})

17);

18

19 });

The fetch event listener allows you to listen for network requests and intercept the responses.
This service worker example uses a fetch event listener to read both from the cache (using
caches.match()) and from the network (using fetch()). The call to caches.match() returns a
promise that is always fulfilled, either with the matching response object or with undefined if the
request isn’t in the cache. The event.respondWith()method expects a promise to be passed, so this
event handler passes the result of Promise.any().

Two promises are passed to Promise.any(): the fetched response with a rejection handler that
defaults back to the cached response and the cached response itself. In this way, the cached response
is returned both if there is a cache hit that fulfills first and if the fetched response is rejected.
The fulfillment handler then makes sure there is a valid response (remember, response might be
undefined if the cache responds first with a miss). The rejection handler doesn’t do anything because
there is no fallback in this situation. Both the fetched response and the cached response were rejected,
so the error is silently ignored to allow the browser to use its default behavior.

While Promise.any() short-circuits after the first fulfilled promise, you may also want to short-
circuit the operation based on the first settled promise regardless of the outcome. For that case, you
can use Promise.race() (discussed later in this chapter).

The Promise.race() Method

The Promise.race() method provides a slightly different take on monitoring multiple promises.
This method also accepts an iterable of promises to monitor and returns a promise, but the returned
promise is settled as soon as the first promise is settled. Instead of waiting for all promises to be
resolved like the Promise.all() method or short-circuiting only for the first resolved promise like
Promise.any(), the Promise.race()method returns an appropriate promise as soon as any promise
in the array is settled. For example:

3. Working with Multiple Promises 45

1 let promise1 = Promise.resolve(42);

2

3 let promise2 = new Promise(function(resolve, reject) {

4 resolve(43);

5 });

6

7 let promise3 = new Promise((resolve, reject) => {

8 setTimeout(() => {

9 resolve(44);

10 }, 100);

11 });

12

13 let promise4 = Promise.race([promise1, promise2, promise3]);

14

15 promise4.then(value => console.log(value)); // 42

In this code, the first promise (promise1) is created as a fulfilled promise while the others schedule
jobs. The fulfillment handler for promise4 is then called with the value of 42 and ignores the other
promises. The promises passed to Promise.race() are truly in a race to see which is settled first. If
the first promise to settle is fulfilled, then the returned promise is fulfilled; if the first promise to
settle is rejected, then the returned promise is rejected. Here’s an example with a rejection:

1 let promise1 = new Promise(function(resolve, reject) {

2 setTimeout(function() {

3 resolve(42);

4 }, 100);

5 });

6

7 let promise2 = new Promise(function(resolve, reject) {

8 reject(43);

9 });

10

11 let promise3 = new Promise(function(resolve, reject) {

12 setTimeout(function() {

13 resolve(44);

14 }, 50);

15 });

16

17 let promise4 = Promise.race([promise1, promise2, promise3]);

18

19 promise4.catch(reason => console.log(reason)); // 43

Here, both promise1 and promise3 use setTimeout() to delay promise fulfillment. The result is that

3. Working with Multiple Promises 46

promise4 is rejected because promise2 is rejected before either promise1 or promise3 is resolved.
Even though promise1 and promise3 are eventually fulfilled, those results are ignored because they
occur after promise2 is rejected.

When to Use Promise.race()

The Promise.race()method is best used in situations where you want to be able to short-circuit the
completion of a number of different promises. Unlike Promise.any(), where you specifically want
one of the promises to succeed and only care if all promises fail, with Promise.race() you want to
know even if one promise fails as long as it fails before any other promise fulfills. Here are some
situations where you may want to use Promise.race().

Establishing a Timeout for an Operation

While the fetch() function has a lot of helpful functionality, one thing it doesn’t do is manage
a timeout for a given request; a request will happily hang until the request completes one way
or another. You can easily create a wrapper method to add a timeout to any request by using
Promise.race():

1 function timeout(milliseconds) {

2 return new Promise((resolve, reject) => {

3 setTimeout(() => {

4 reject(new Error("Request timed out."));

5 }, milliseconds);

6 });

7 }

8

9 function fetchWithTimeout(...args) {

10 return Promise.race([

11 fetch(...args),

12 timeout(5000)

13]);

14 }

15

16 const API_URL = "https://jsonplaceholder.typicode.com/users";

17

18 fetchWithTimeout(API_URL)

19 .then(response => response.json())

20 .then(users => console.log(users))

21 .catch(reason => console.error(reason.message));

The timeout() function is similar to the delay() function created earlier in this chapter except
that it calls reject() after a delay rather than resolve(). In this case, the delay represents an

3. Working with Multiple Promises 47

error condition as you want to be informed when a request has taken longer than expected (5000
milliseconds in this example). The fetchWithTimeout() function then calls fetch() along with
timeout() in an array that is passed to Promise.race(). If the call to fetch() takes longer than
the timeout, the returned promise is rejected so you can handle the failure appropriately.

Keep in mind that even though fetchWithTimeout() will reject if a request takes longer
than the specified timeout, the request will not be cancelled. It will continue waiting for a
response behind-the-scenes even though the response will be ignored.

Summary

For times when you want to monitor and respond to multiple promises at the same time, JavaScript
provides several methods. Each method behaves slightly differently, but all allow you to run
promises in parallel and respond to them as a group:

• Promise.all() - the returned promise is fulfilled when all of the promises are fulfilled, and the
returned promise is rejected when any promise is rejected.

• Promise.allSettled() - the returned promise is always fulfilled with an array of results from
the promise, and the returned promise is never rejected.

• Promise.any() - the returned promise is fulfilled when the first promise is fulfilled, and the
returned promise is rejected when all of the promises are rejected.

• Promise.race() - the returned promise is fulfilled when the first promise to settle is fulfilled,
and the returned promise is rejected when the first promise to settle is rejected.

Each of these methods is appropriate for different use cases, and it’s up to you to decide which is
appropriate in any situation.

Final Thoughts
When promises were added into the JavaScript language in 2015, they were a source of controversy
and the topic of many thinkpieces opining whether this was the right way to address the
asynchronous future of JavaScript. After several years, the dust has settled and promises have won
many over, especially with the introduction of async functions in 2017. All new asynchronous
JavaScript APIs are built to make use of promises, so understanding how to work with promises
is an important part of any JavaScript-focused job.

I hope you’ve enjoyed this exploration of JavaScript promises.

Purchase the Full Version

You’ve been reading the community version of this book. If you’ve enjoyed reading it, please consider
purchasing the full version at https://bit.ly/promises-full-ebook. The benefits of the full version
include:

1. PDF, Mobi, and ePub formats
2. An extra chapter on async functions
3. An extra chapter on unhandled rejection tracking
4. Free updates

It takes a lot of time and effort to create a book like this, so I’d appreciate your consideration.

Help and Support

If you have any questions or comments about this book, please email books@humanwhocodes.com.
Be sure to mention the title of this book in the subject line.

Follow the Author

You can follow Nicholas C. Zakas on the following sites:

• Blog: https://humanwhocodes.com
• Twitter:@slicknet, @humanwhocodes
• GitHub:@nzakas, @humanwhocodes
• Instagram:@nzakas, @humanwhocodes

Reach out and say hi!

https://bit.ly/promises-full-ebook
https://humanwhocodes.com
https://twitter.com/slicknet
https://twitter.com/humanwhocodes
https://github.com/nzakas
https://github.com/humanwhocodes
https://instagram.com/nzakas
https://instagram.com/humanwhocodes

	Table of Contents
	Introduction
	About This Book
	Acknowledgments

	1. Promise Basics
	The Promise Lifecycle
	Creating New (Unsettled) Promises
	Creating Settled Promises
	Summary

	2. Chaining Promises
	Catching Errors
	Using finally() in Promise Chains
	Returning Values in Promise Chains
	Returning Promises in Promise Chains
	Summary

	3. Working with Multiple Promises
	The Promise.all() Method
	The Promise.allSettled() Method
	The Promise.any() Method
	The Promise.race() Method
	Summary

	Final Thoughts
	Purchase the Full Version
	Help and Support
	Follow the Author

